Together with some colleagues, I am organizing a workshop on the intersection of quantum gravity and lattice QFT at ECT* in Trento, Italy, September 3-7.
Click here for the conference website.
The conference abstract goes as follows:
AdS/CFT has been one of the most fruitful approaches to analyse the qualitative aspects of the dynamics of strongly interacting QFTs, most prominently QCD. As an approach to understanding the early stage of high energy heavy ion collisions, but also proton-proton collisions at LHC, it is, in fact, one of very few systematic approaches. However, it is not clear how reliable the description is quantitatively, because QCD is not a N=4, supersymmetric, conformal, SU(N) gauge theory with infinite N and the QCD coupling constant is of limited size. Individual contributions exist on both sides of the duality calculating the size of the relevant corrections (like the perturbative calculation of quantum corrections on the gravity side for finite N and finite coupling strength, the lattice simulation of SU(N) gauge theories with N>3, the calculation of perturbative corrections from non conformality on the QFT side, lattice simulation with partial supersymmetry …) but no systematic effort. In addition, more general scenarios for gauge/gravity dualities have been studied, extending beyond the realms of AdS, CFT, and string theory. The probability is high that quantitative contact can only be made on the basis of non-perturbative calculations on both sides, which is a very tall order. On the QFT side, lattice QFT is the best established tool to do so, while on the quantum gravity side resummed string theory is the main approach. In addition, there is an increased recent interest within loop quantum gravity in holographic computations.
The aim of the workshop is to bring some of the internationally leading experts in these fields together, formulate a more systematic strategy, and realize a few projects in the direction of a quantitative application of quantum gravity techniques to QCD in subsequent months.
" In addition, more general scenarios for gauge/gravity dualities have been studied, extending beyond the realms of AdS, CFT, and string theory."
ReplyDeleteis there a gauge/gravity dualities where gravity side is described by LQG?
"In addition, there is an increased recent interest within loop quantum gravity in holographic computations"
any papers and research on this topic?
Hi Neo.
Deleteis there a gauge/gravity dualities where gravity side is described by LQG?
So far, duals have been found for 3d LQG with vanishing cosmological constant:
https://arxiv.org/abs/1504.02822
https://arxiv.org/abs/1710.04202
https://arxiv.org/abs/1710.04237
any papers and research on this topic?
on top of the above:
https://arxiv.org/abs/1610.02134
https://arxiv.org/abs/1705.01964
https://arxiv.org/abs/1612.06679
https://arxiv.org/abs/1804.01387
thanks
Deletedo you have any powerpoint slides that summarize gauge/gravity dualities in LQG that you can share now?
is the gauge theory in gauge/gravity dualities in LQG also a CFT?
The known dual models in the papers above are statistical model. They often have a CFT description at the critical point, but not necessarily away from it. So the framework seems more general so far. About slides, I hope to upload a talk soon.
Deletei look forward to this. I used to visit physics forum and read Marcus summary of the latest results in LQG, but sadly he has passed away several years ago.
Deleteif you have the time and interest, since you are the only LQG blog i know of, and this is a LQG blog, could you summarize recent research directions and papers and results in LQG and spinfoam similar to what Marcus did back on PF.
is there a merger coming for string theory and LQG?