Pages

Monday, September 16, 2019

Coarse Graining with SU(1,1)

This is the second post in a series about SU(1,1) techniques for coarse graining loop quantum cosmology. While the previous post was about the general idea of group quantisation techniques, this one will focus on coarse graining.

Friday, September 13, 2019

Public talk (in German)

Last year, I gave a public talk (in German) about quantum gravity in Regensburg. It is available on youtube:



It was done as an invited presentation to a talk series called Was-Ist-Wirklich (What is real), featuring various topics in science.

Friday, May 10, 2019

Quantum cosmology with SU(1,1)

This is the first post in an upcoming series covering some recent papers that deal with quantum cosmology models that are strongly relying on an SU(1,1), or equivalently SL(2,R), structure. In brief, one identifies classical phase space functions whose Poisson algebra is isomorphic to the Lie algebra su(1,1) and then quantises the cosmological model by promoting those functions to the generators of su(1,1) in some representation. The main advantage of this quantisation method is that the representation theory of the group under consideration is well known, so that the crucial "find a representation" step in constructing the quantum theory is essentially trivial.

Friday, May 3, 2019

Singularity resolution in LQG inspired black holes

It is expected that quantum gravity will somehow resolve the singularities that are generically present in classical gravitational theories. For example, this may be the Big Bang singularity that one encounters when applying Einstein's theory of General Relativity all the way to the beginning of the universe. An example of how this singularity is resolved in the context of loop quantum cosmology was discussed in this post.

Another place where singularities prominently occur is inside black holes. Matter that falls through the horizon of a black hole will eventually hit this singularity and the theory describing its propagation breaks down in this instant. On the other hand, a compete theory of quantum gravity should provide a well-defined description of such a process.

Penrose diagram of a maximally extended Schwarzschild spacetime. Physical motion bounded by the speed of light is possible only within the future light-cones drawn in orange. Due to the structure of the spacetime, any observer crossing the black hole horizon will eventually hit the black hole singularity.