tag:blogger.com,1999:blog-23819000801065224412018-09-17T10:50:27.341+02:00relatively quantumA blog around my research in quantum gravityNorberthttp://www.blogger.com/profile/04965554394207041308noreply@blogger.comBlogger30125tag:blogger.com,1999:blog-2381900080106522441.post-88559188154824672672018-05-18T15:04:00.000+02:002018-09-12T10:59:00.751+02:00PhD Position availableA PhD Position in my group is available starting this fall. The full advertisement is below:<br /><br />EDIT: The position has been filled.<br /><br /><a name='more'></a><br />The Junior Research Group “Quantum Gravity Techniques for Real World Applications of the Gauge / Gravity Duality” funded by the Elite Network of Bavaria is planning to hire a PhD student starting in September 2018 or later. The group is located at the University of Regensburg within a large and very active quantum field theory group and headed by Dr. Norbert Bodendorfer. It employs up to three PhD students (of which two positions are currently filled) and hosts a varying number of Bachelor and Master students. <br /><br />The salary is 2/3 of an TVL-E13 position, resulting in approximately 1500 EUR monthly after taxes and benefits (including health insurance and retirement funds). The position will be funded for at least 3 years. A moderate amount of teaching in accordance with the university’s regulations will be required. The position comes with an annual travel budget of 2000 EUR. Applicants should hold a MSc degree in physics or equivalent before signing the contract.<br /><br />The research focus of the group will be to apply loop quantum gravity techniques to the gauge / gravity correspondence with the eventual goal to better understand finite N gauge theories via quantum gravity. Individual research projects may include lattice gauge theory and will in this case be executed in collaboration with experts from Regensburg.<br /><br />PhD students in the Junior Research Group have access to the activities of the Elite Graduate Programme “Physics Advanced” jointly run by the Universities of Erlangen-Nuremberg and Regensburg (workshops, summer schools, …) as well as to those of the Elite Network of Bavaria (soft-skill seminars, …). Likewise, activities of the graduate school “Particle Physics and High Performance Computing” in Regensburg will be open to them.<br /><br />In order to apply, please send an email to norbert.bodendorfer@physik.uni-r.de including a CV, transcripts, and a concise letter of motivation stating <br /><br />– your research interests<br />– your motivation to join the group<br />– whatever you think is relevant.<br /><br />Letters of recommendation are optional but welcome and should be sent by the author to the same email address.<br /><br />Applications will be reviewed on a rolling basis. The final selection will not be made prior to August 1, 2018, so that all applications received by this date will receive full consideration. Later application will be considered until the position is filled.<br /><br />EDIT: The position has been filled.<br /><div><br /></div><br /><br />Norberthttp://www.blogger.com/profile/04965554394207041308noreply@blogger.com0tag:blogger.com,1999:blog-2381900080106522441.post-61442237783987948172018-04-12T09:47:00.000+02:002018-04-12T09:47:30.827+02:00Quantum Gravity meets Lattice QFTTogether with some colleagues, I am organizing a workshop on the intersection of quantum gravity and lattice QFT at ECT* in Trento, Italy, September 3-7.<br /><br /><a href="http://indico.ectstar.eu/event/21/" target="_blank">Click here for the conference website. </a><br /><br /><br />The conference abstract goes as follows:<br /><br />AdS/CFT has been one of the most fruitful approaches to analyse the qualitative aspects of the dynamics of strongly interacting QFTs, most prominently QCD. As an approach to understanding the early stage of high energy heavy ion collisions, but also proton-proton collisions at LHC, it is, in fact, one of very few systematic approaches. However, it is not clear how reliable the description is quantitatively, because QCD is not a N=4, supersymmetric, conformal, SU(N) gauge theory with infinite N and the QCD coupling constant is of limited size. Individual contributions exist on both sides of the duality calculating the size of the relevant corrections (like the perturbative calculation of quantum corrections on the gravity side for finite N and finite coupling strength, the lattice simulation of SU(N) gauge theories with N>3, the calculation of perturbative corrections from non conformality on the QFT side, lattice simulation with partial supersymmetry …) but no systematic effort. In addition, more general scenarios for gauge/gravity dualities have been studied, extending beyond the realms of AdS, CFT, and string theory. The probability is high that quantitative contact can only be made on the basis of non-perturbative calculations on both sides, which is a very tall order. On the QFT side, lattice QFT is the best established tool to do so, while on the quantum gravity side resummed string theory is the main approach. In addition, there is an increased recent interest within loop quantum gravity in holographic computations.<br /><br />The aim of the workshop is to bring some of the internationally leading experts in these fields together, formulate a more systematic strategy, and realize a few projects in the direction of a quantitative application of quantum gravity techniques to QCD in subsequent months.Norberthttp://www.blogger.com/profile/04965554394207041308noreply@blogger.com5tag:blogger.com,1999:blog-2381900080106522441.post-42972313112781247482017-07-24T10:59:00.000+02:002017-08-25T13:29:44.451+02:00New group + PhD positions<div class="separator" style="clear: both; text-align: center;"><a href="https://idw-online.de/de/newsimage?id=108185&size=screen" imageanchor="1" style="margin-left: 1em; margin-right: 1em;"><img border="0" data-original-height="618" data-original-width="800" height="247" src="https://idw-online.de/de/newsimage?id=108185&size=screen" width="320" /></a></div><br /><br />The <a href="https://www.elitenetzwerk.bayern.de/elite-network-home/elite-network-home/?L=2" target="_blank">Elite Network of Bavaria</a> recently awarded me with a <a href="https://www.elitenetzwerk.bayern.de/elitenetzwerk-home/aktuelles/artikel/einrichtung-neuer-elitestudiengaenge-und-internationaler-nachwuchsforschergruppen-226/" target="_blank">grant</a> to start my own research group at the University of Regensburg starting this fall. I am currently looking for PhD students to work with me on projects at the intersection of loop quantum gravity and string theory, more precisely in applying ideas about quantum gravity corrected geometries in the context of the gauge / gravity duality. The announcement for the positions can be found here.<br /><br />EDIT: All currently open positions have been filled.Norberthttp://www.blogger.com/profile/04965554394207041308noreply@blogger.com3tag:blogger.com,1999:blog-2381900080106522441.post-83001114152525095922017-04-03T19:00:00.000+02:002017-04-03T19:00:30.628+02:00Chamseddine and Mukhanov reinvent loop quantum cosmologyIn a <a href="https://arxiv.org/abs/1612.05860" target="_blank">recent paper</a>, Chamseddine and Mukhanov have proposed a modification of general relativity that features a limiting curvature. The model is in the framework of their earlier work on "<a href="https://arxiv.org/abs/1403.3961" target="_blank">mimetic gravity</a>" and coupled general relativity to a scalar field $\phi$ that is constrained as<br />\[<br />g^{\mu \nu} \partial_\mu \phi \partial_\nu \phi = 1<br />\]<br />in the mostly minus signature convention. In addition to this constraint, the action contains the term $f(\Box \phi)$. In the homogeneous and isotropic sector, $\Box \phi$ is proportional to the Hubble rate $\dot a / a$.<br /><br />The main input that is needed to fully define this model is the function $f$, which can a priori be chosen arbitrarily up to a consistency requirement with general relativity at low curvatures. In their paper, Chamseddine and Mukhanov make the proposal<br />\[<br />f(\chi) = - \chi_m^2 \, g\left( \sqrt{\frac{2}{3}} \frac{\chi}{\chi_m} \right), ~~~ g(y) = -1 -\frac{y^2}{2} + y \arcsin y + \sqrt{1-y^2}<br />\]<br />which leads in the homogeneous and isotropic sector to a very simple correction to the Friedmann equation of the form<br />\[<br />\frac{\dot a}{a} \propto \rho \left(1- \frac{\rho}{\rho_\text{crit}}\right)<br />\] <br />where $\rho$ is the matter energy density and $\rho_\text{crit}$ a free parameter. This equation leads to a bouncing universe at the critical matter energy density $\rho_\text{crit}$.<br /><br />In the homogeneous but non-isotropic sector, one can again solve the equations of motion to find singularity resolution, however with somewhat more complicated details. An analogous modification for Schwarzschild black holes is discussed in a <a href="https://arxiv.org/abs/1612.05861" target="_blank">second paper</a>.<br /><br />It is interesting to note that the corrected Friedmann equation above is already known from loop quantum gravity, more precisely from the effective equations of loop quantum cosmology. This already suggests that at least in the homogeneous and isotropic sector, the two theories should agree.<br /><br />In fact, the choice for $f$ can be read off from the effective action of loop quantum cosmology, as computed first in <a href="https://arxiv.org/abs/0811.4023" target="_blank">this paper</a>, equation 7. A more detailed investigation in based on the Hamiltonian formulation of the model proposed by Chamseddine and Mukhanov confirms this. The details have been written up in <a href="https://arxiv.org/abs/1703.10670" target="_blank">this paper</a>, see also <a href="https://arxiv.org/abs/1703.10812" target="_blank">this paper</a> for an intendedly simultaneous publication of related results.<br /><br />In addition, a quantum mechanical argument is given there why this choice of $f$ is the simplest one consistent with quantum mechanics: Mukhanov and Chamseddine motivate the structure of their model with non-commutative geometry, in particular the quantisation of three-volume. In a canonical quantisation setting, this leads one directly to the simplest version of loop quantum cosmology. The choice for $f$ then follows by a Legendre-transform. <br /><br />If one goes beyond the homogeneous and isotropic setting, the effective loop quantum cosmology deviates from the model of Chamseddine and Mukhanov in the details. Still, the qualitative behavior is the same for homogeneous but non-isotropic metrics. Beyond this, a comparison is hard to make because the effective LQG dynamics are in general not known. This on the other hand suggests to simply use the new model as a toy model for loop quantum gravity, i.e. as a toy model effective action that is completely known. The main application of this would be to obtain an understanding for the effective geometries that can emerge from the quantum corrections build into loop quantum gravity beyond the cosmological setting.<br /><br />Norberthttp://www.blogger.com/profile/04965554394207041308noreply@blogger.com1tag:blogger.com,1999:blog-2381900080106522441.post-42846460046936375422016-12-23T11:04:00.000+01:002016-12-23T11:04:12.696+01:00Holographic signatures of resolved cosmological singularitiesAfter some longer silence partly due to moving to a new location (LMU Munich) and teaching my first regular lecture (Theoretical mechanics for lyceum teachers and computational science at Regensburg University), I hope to write more regularly again in the future.<br /><br />As a start, a new paper on using loop quantum gravity in the context of AdS/CFT has finally appeared <a href="https://arxiv.org/abs/1612.06679" target="_blank">here</a>. Together with Andreas Schäfer and John Schliemann from Regensburg University, we asked the question of what happens in the dual CFT if you assume that the singularity on the gravity side is resolved in a manner inspired by results from loop quantum gravity.<br /><br />Building (specifically) on recent work by <a href="https://arxiv.org/abs/1503.08838" target="_blank">Engelhardt, Hertog, and Horowitz</a> (as well as many others before them) using classical gravity, we found that a finite distance pole in the two-point-correlator of the dual CFT gets resolved if you resolve the singularity in the gravity theory. Several caveats apply to this computation, which are detailed in the papers. We view this result therefore as a proof of principle that such computations are possible, as opposed to some definite statement of how exactly they should be done.Norberthttp://www.blogger.com/profile/04965554394207041308noreply@blogger.com1tag:blogger.com,1999:blog-2381900080106522441.post-64269873564641612112016-09-21T14:43:00.000+02:002016-09-21T14:43:57.993+02:00Coarse graining and state refinements<div class="separator" style="clear: both; text-align: center;"><iframe width="320" height="266" class="YOUTUBE-iframe-video" data-thumbnail-src="https://i.ytimg.com/vi/UfN-KoNCWag/0.jpg" src="https://www.youtube.com/embed/UfN-KoNCWag?feature=player_embedded" frameborder="0" allowfullscreen></iframe></div><br /><br />Coarse graining has become an increasingly important topic in loop quantum gravity with several researchers working on it. As usual in physics, one is interested in integrating out microscopic degrees of freedom and doing computations on an effective coarse level. How exactly the states, observables, and dynamics of the theory should change under such a renormalisation group flow is only poorly understood at the moment.<br /><br />Recently, I have written <a href="http://arxiv.org/abs/1607.06227">a paper</a> about this topic in a simplified context which is tailored to reproduce loop quantum cosmology from loop quantum gravity. Here, one can explicitly coarse grain the relevant observables, the scalar field momentum and the volume of the spatial slice, and check that their dynamics remains unchanged under such a coarse graining.<br /><br />The reason that this works is rooted in an exact solution to loop quantum cosmology which can be imported in this full theory setting. In particular, the form of the dynamics of this solution is independent of the volume of the universe. It then follows that if we concentrate the volume of some set of vertices at a single one, the evolution of this coarse grained volume will agree with the evolution of the sum of the individual volumes.<br /><br />The content of the paper is sketched in the brief talk linked above.Norberthttp://www.blogger.com/profile/04965554394207041308noreply@blogger.com0tag:blogger.com,1999:blog-2381900080106522441.post-68360686157361893392016-07-27T09:35:00.000+02:002016-07-27T09:35:34.748+02:00Heuristics for Lorentz violations in LQG<table align="center" cellpadding="0" cellspacing="0" class="tr-caption-container" style="margin-left: auto; margin-right: auto; text-align: center;"><tbody><tr><td style="text-align: center;"><a href="https://1.bp.blogspot.com/-jyXTnlxxpNg/V5DjCijsm-I/AAAAAAAAAfY/thhn_qN3tk8aBGvs_q3bsmh18WGQYGvWgCLcB/s1600/Lorentz%2Bviolation%2Bdifference%2Bin%2Bspeed%2Bof%2Blight%2Bsmall.jpg" imageanchor="1" style="margin-left: auto; margin-right: auto;"><img border="0" height="182" src="https://1.bp.blogspot.com/-jyXTnlxxpNg/V5DjCijsm-I/AAAAAAAAAfY/thhn_qN3tk8aBGvs_q3bsmh18WGQYGvWgCLcB/s400/Lorentz%2Bviolation%2Bdifference%2Bin%2Bspeed%2Bof%2Blight%2Bsmall.jpg" width="400" /></a></td></tr><tr><td class="tr-caption" style="text-align: center;">Slight energy dependences in the speed of light can accumulate over time,<br />allowing for possible detection or exclusion of such effects. Highly energetic<br />photons emitted e.g. by a supernova are in particularly useful for such studies.</td></tr></tbody></table><br /><div>Predictions for possible Lorentz violations are a key area of interesting phenomenology in quantum gravity. Within loop quantum gravity, it has not been possible so far to reliably extract predictions for Lorentz violations. Existing claims were based on simplified toy models inspired by LQG, but not implied. This situation hasn’t changed so far, but there is an interesting development which hints at which order we might expect such Lorentz violations to be found.<br /><div><a name='more'></a><br />In recent years, investigations in the anomaly freedom of effective constraints for <a href="http://arxiv.org/abs/1111.7192" target="_blank">cosmological perturbations</a> and <a href="http://arxiv.org/abs/1507.00329" target="_blank">spherical symmetry</a> have brought forward evidence for a<a href="http://arxiv.org/abs/1503.09154" target="_blank"> smooth signature change </a>at densities close to the Planck density. This effect shows up in a deformation of the hypersurface deformation algebra, where the commutator<br />$$ \{ H[M], H[N] \} = H_a[\beta ~ q^{ab}(M \partial_b N - N \partial_b M)]$$<br />between two Hamiltonian constraints is modified by a function $\beta$. In the simplest case of holonomy corrections, we have $\beta = 1 - 2 \rho / \rho_\text{crit}$, where $\rho$ is the background energy density and $\rho_\text{crit} \sim 1 / G^2 \hbar$ is the critical energy density at which the quantum bounce substituting the big bang occurs. Since the hypersurface deformation algebra of Euclidean gravity has the opposite sign in the previous Poisson bracket, we can interpret this as a smooth signature change from Lorentzian to Euclidean. <br /><br />As a physical effect, one finds that also the propagation equation for matter fields gets modified as<br />$$ \frac {\partial^2 \phi^2}{\partial t^2} - \frac{\beta}{a^2} \Delta \phi = S[\phi] $$<br />where $S[\phi]$ contains source and lower derivative terms. It follows that $\beta \neq 1$ implies a change in the speed of light. <br /><br />So far, $\beta$ only depends on the background energy density, meaning that no particle-energy dependent speed of light can be deduced. However, one should also take into account backreaction of a particle on the background. This has not been done rigorously so far, but we can try a heuristic estimate of the effect to be expected. <br /><br />Consider a photon. Its energy density is roughly given by </div><div>$$\rho_\text{Photon} \sim E_\text{Photon} / \lambda_\text{Photon}^3 = \hbar \omega^4 / (2 \pi)^3 \text{.}$$ </div><div>The difference in the speed of two photons thus depends on the difference of their energy densities that we input in $\beta$. We estimate<br />$$ 1-\beta \sim \frac{\rho_\text{Photon}}{\rho_\text{crit}} \sim \hbar^2 G^2 \omega^4 \sim \frac{E_\text{Photon}^4}{E_\text{Planck}^4} \text{.} $$<br />We conclude that based on our argument, we would expect an energy dependence of the speed of light which deviates from the standard speed of light by a term of order $4$ in $\frac{E_\text{Photon}}{E_\text{Planck}}$. Given <a href="http://arxiv.org/abs/1304.5795" target="_blank">current experimental data</a>, there seems to be no contradiction with experiment. <br /><br />It has to be stressed that this argument was very qualitative and has several weak points. While signature change has been observed by several authors in different contexts, it is not established yet in full loop quantum gravity. Also, our treatment of backreaction was very naive and a more detailed study should be undertaken. Still, it seems that the possible deduction of Lorentz violations from the deformed algebra approach is an interesting subject of study, and that the appearance of the effect only at order 4 goes against common expectations. <br /><br />This argument has been written up <a href="http://arxiv.org/abs/1607.05129" target="_blank">here</a> in other words. I am currently aware <a href="http://arxiv.org/abs/1112.1899" target="_blank">of</a> <a href="http://arxiv.org/abs/1304.2208v1" target="_blank">some</a> <a href="http://arxiv.org/abs/1605.05979" target="_blank">other</a> <a href="http://arxiv.org/abs/1605.00497" target="_blank">works</a> trying to find modified dispersion relations from the deformed algebra approach, but I could not find the argument made here in there. In any case, I would be very happy about comments on this topic.</div></div>Norberthttp://www.blogger.com/profile/04965554394207041308noreply@blogger.com0tag:blogger.com,1999:blog-2381900080106522441.post-53761672313978566482016-07-19T18:44:00.000+02:002016-07-19T18:44:13.133+02:00Elements of loop quantum gravity<div class="separator" style="clear: both; text-align: center;"><a href="https://2.bp.blogspot.com/-jYcLFGVV1O0/V45Xn33zEzI/AAAAAAAAAfA/hTql4u7dY3AobzWIQGocrcbPeH_IMkMRgCLcB/s1600/Introduction_to_loop_quantum_gravity.jpg" imageanchor="1" style="margin-left: 1em; margin-right: 1em;"><img alt="Elements of loop quantum gravity lecture outline" border="0" height="185" src="https://2.bp.blogspot.com/-jYcLFGVV1O0/V45Xn33zEzI/AAAAAAAAAfA/hTql4u7dY3AobzWIQGocrcbPeH_IMkMRgCLcB/s320/Introduction_to_loop_quantum_gravity.jpg" title="Elements of loop quantum gravity lecture outline" width="320" /></a></div><div style="font-family: Helvetica; font-size: 12px; line-height: normal;"><br /></div><div style="font-family: Helvetica; font-size: 12px; line-height: normal;"><br /></div>After some longer silence on this blog, I am happy to announce that the <a href="http://arxiv.org/abs/1607.05129">introductory lectures</a> from which excerpts have appeared here before are finally online. <br /><br />The lectures start with a general introduction to quantum gravity, including a theoretical motivation, possible experimental tests, and the previously posted <a href="http://relatively-quantum.bodendorfer.eu/2016/04/approaches-to-quantum-gravity.html">list on approaches</a> to the subject. There is also an improved (as compared to <a href="http://relatively-quantum.bodendorfer.eu/2016/04/updates-on-some-criticisms-of-loop.html">here</a>) estimate on the local Lorentz invariance violation based on anomaly freedom of effective constraints. I am planning to write about it in more detail in the future. <br /><br />Next, an introduction to loop quantum cosmology is given, a draft of which has appeared <a href="http://relatively-quantum.bodendorfer.eu/2016/03/how-does-loop-quantum-cosmology-work.html">here</a> before. The new version features some improvements in the presentation and some simplifications in the derivation.<br /><br />The remaining part of the lectures introduces full loop quantum gravity with minimal technical details. The derivation of geometric operators is sketched and different approaches to the dynamics are discussed. Promising lines of current research are mentioned and evaluated. Exercises are included at the end of each section. <br /><br />The present lecture notes are somewhat complementary to several other sets of lecture notes existing in the literature in that they refrain from technical details and give a broad overview of the subject, including motivations and current trends. If someone spots mistakes or has suggestions for a better presentation, I would be happy to hear about it. Norberthttp://www.blogger.com/profile/04965554394207041308noreply@blogger.com0tag:blogger.com,1999:blog-2381900080106522441.post-70994479344554368052016-06-08T13:55:00.000+02:002016-06-09T08:47:27.850+02:00Strings meet Loops via AdS/CFT (Helsinki Workshop on Quantum Gravity 2016)<div class="separator" style="clear: both; text-align: center;"><iframe allowfullscreen="" class="YOUTUBE-iframe-video" data-thumbnail-src="https://i.ytimg.com/vi/AN6oQMNmu3k/0.jpg" frameborder="0" height="266" src="https://www.youtube.com/embed/AN6oQMNmu3k?feature=player_embedded" width="320"></iframe></div><br /><br />This rerecorded talk was originally given at the <a href="http://research.hip.fi/hwp/qg_helsinki/" target="_blank">Helsinki Workshop on Quantum Gravity</a> on June 2, 2016. I was invited by the organisers to talk about a <a href="http://arxiv.org/abs/1509.02036" target="_blank">recent paper</a>, which was intended as an invitation for people to become interested in the subject, as opposed to giving concrete and detailed results. <br /><br />In particular, I am very much looking forward to discussions about this topic and criticism of the ideas, in particular from experts in string theory. In the long run, much can be gained in my point of view from intensifying the exchange between researchers in loop quantum gravity and string theory.<br /><br />In this context, it is certainly worth pointing out a recent <a href="https://www.quantamagazine.org/20160112-string-theory-meets-loop-quantum-gravity/" target="_blank">article</a> by Sabine Hossenfelder for Quanta Magazine, as well as a <a href="http://backreaction.blogspot.com/2015/10/when-string-theorists-are-out-of-luck.html" target="_blank">blogpost</a> of hers on the paper I wrote.Norberthttp://www.blogger.com/profile/04965554394207041308noreply@blogger.com2tag:blogger.com,1999:blog-2381900080106522441.post-17471160787918181912016-06-01T13:27:00.000+02:002016-06-01T13:27:00.190+02:00Graph superspositions and improved regularisations<table align="center" cellpadding="0" cellspacing="0" class="tr-caption-container" style="margin-left: auto; margin-right: auto; text-align: center;"><tbody><tr><td style="text-align: center;"><a href="https://1.bp.blogspot.com/-lMSEGtlN90A/V07CNpWl2JI/AAAAAAAAAdg/LEHSIZfyzagO8Q0DFjlqz_tJNIo41VslgCLcB/s1600/Picture_Summation_Of_Graphs_LQG_small.jpg" imageanchor="1" style="margin-left: auto; margin-right: auto;"><img alt="Sum of graphs in loop quantum gravity" border="0" height="151" src="https://1.bp.blogspot.com/-lMSEGtlN90A/V07CNpWl2JI/AAAAAAAAAdg/LEHSIZfyzagO8Q0DFjlqz_tJNIo41VslgCLcB/s400/Picture_Summation_Of_Graphs_LQG_small.jpg" title="Sum of graphs in loop quantum gravity" width="400" /></a></td></tr><tr><td class="tr-caption" style="text-align: center;">In loop quantum gravity, the elements of a certain basis in the Hilbert space<br />can be (roughly) interpreted as lattices. Generic quantum states can be constructed <br />as superpositions thereof and a priori have different properties which cannot<br />be realised at the level of individual lattices. </td></tr></tbody></table><div style="font-family: Helvetica; font-size: 12px; line-height: normal;"><br /></div>Let us pick up the topic of extracting effective cosmological dynamics from loop quantum gravity again. Today’s post is about a <a href="https://arxiv.org/abs/1604.02375">recent paper</a> by Emanuele Alesci and Francesco Cianfrani within their framework of “Quantum reduced loop gravity”. This version of loop quantum gravity is arrived at by a gauge fixing to the diagonal metric gauge at the quantum level (as opposed to the classical level as e.g. <a href="https://arxiv.org/abs/1410.5608">here</a>), along with a truncation of the Hamiltonian constraint consistent with a spatially homogeneous setting (in particular, the non-trivial shift resulting from the gauge fixing is dropped). The simplified quantum dynamics resulting form this gauge fixing have allowed to <a href="https://arxiv.org/abs/1402.3155">compute the expectation value</a> of the Hamiltonian constraint in suitable coherent states, leading to the effective Hamiltonian that one finds in loop quantum cosmology. <br /><br />An open issue in this context has been to properly derive the so called <a href="https://arxiv.org/abs/gr-qc/0607039">“improved “ dynamics</a> of loop quantum cosmology, which are consistent with observation and do not feature some unphysical properties of the original formulation. This is somewhat tricky if one uses standard connection variables along with a gauge group like SU(2) or U(1) for the following reason:<br /><a name='more'></a><br />In loop quantum gravity, only holonomies of the connection are well defined operators. In the process of regularising the Hamiltonian, the connection, or rather, the field strength thereof, has to be approximated by holonomies. In practise, this roughly means that one performs the substitution $A \rightarrow \sin (A)$, which is clearly good only as long as A is small. If one now integrates the connection A along a “long” path, one finds that in the context of cosmology the resulting object scales as “matter energy density” times “distance”. In quantum gravity, we expect deviations from known physics as soon as we reach the Planck scale, i.e. when the matter energy density is at the order of the Planck density. Therefore, in order to be consistent with standard physics at large distances, one needs to modify the polymerisation $\int A \rightarrow \sin (\int A)$ to $\int A \rightarrow \sin (\bar \mu \int A) / \bar \mu$, where $\bar \mu$ scales as the inverse distance. This prescription was originally put forward <a href="https://arxiv.org/abs/gr-qc/0607039">using a coarse graining argument</a> and rederived <a href="https://arxiv.org/abs/1410.5608">here</a> and <a href="https://arxiv.org/abs/1512.00713">here</a> using the above argument. <br /><br />The problem now is that the inverse distance scaling necessitates to use non-integer representation labels in the quantum theory, which is not possible with SU(2) or U(1). A way out is to construct the theory from beginning using the gauge group $\mathbb R_{\text{Bohr}}$ after a classical gauge fixing, which was done <a href="https://arxiv.org/abs/1410.5608">here</a>. However, this leaves open how the improved LQC dynamics can arise also from standard loop quantum gravity. <br /><br />In their paper, Emanuele and Francesco now show that at least at the level of the expectation value of the Hamiltonian constraint, one can also get the improved dynamics without resorting to $\mathbb R_{\text{Bohr}}$. Due to the above argument, this cannot be achieved on a fixed graph. Instead, they propose to use a superposition of graphs of all possible sizes, weighted by a natural statistical factor. After a suitable saddle point approximation in the resulting state, they show that the expectation value of the Hamiltonian is given by that of loop quantum cosmology with the improved dynamics. Also, next-to-leading order corrections are computed, with the result that they don’t affect the LQC dynamics qualitatively $\omega < 1$ (see <a href="https://en.wikipedia.org/wiki/Equation_of_state_(cosmology)">here</a> for what $\omega$ is in cosmology), as well as for $\omega = 1$ imposing the universe at the bounce point is sufficiently large w.r.t. the Planck scale.<br /><br />This is, to the best of my knowledge, the first example where graph superpositions were used in loop quantum gravity to derive a result which one cannot simply get by working on a fixed graph. The relevance of such graph superpositions for the theory, in particular for the classical limit and the issue of Lorentz invariance, has been discussed in an <a href="http://relatively-quantum.bodendorfer.eu/2016/04/is-loop-quantum-gravity-based-on.html">earlier post</a>. The possibility to consider quantum superpositions of graphs is the key feature of loop quantum gravity that distinguishes it from approaches based on fixed lattices. <br /><br />To sum up, the paper contains a very interesting new result based on a feature of loop quantum gravity (graph superpositions) that has been mostly ignored so far. The insights gained here can be potentially very important in studies of the classical limit of the theory.Norberthttp://www.blogger.com/profile/04965554394207041308noreply@blogger.com0tag:blogger.com,1999:blog-2381900080106522441.post-42860242642176678622016-05-04T14:39:00.000+02:002016-05-04T14:39:41.166+02:00Progress on low spins<table align="center" cellpadding="0" cellspacing="0" class="tr-caption-container" style="margin-left: auto; margin-right: auto; text-align: center;"><tbody><tr><td style="text-align: center;"><a href="https://3.bp.blogspot.com/-33XcSQ5Ci8Y/VynVNT9-nSI/AAAAAAAAAcM/3facAA19EWITEfUeo9owTqKefUmNjXdQwCLcB/s1600/Low_spins_Transplanckian_and_continuum_small.jpg" imageanchor="1" style="margin-left: auto; margin-right: auto;"><img alt="Transplanckian large spins decay into small spins under the dynamics" border="0" height="305" src="https://3.bp.blogspot.com/-33XcSQ5Ci8Y/VynVNT9-nSI/AAAAAAAAAcM/3facAA19EWITEfUeo9owTqKefUmNjXdQwCLcB/s400/Low_spins_Transplanckian_and_continuum_small.jpg" title="Transplanckian large spins decay into small spins under the dynamics" width="400" /></a></td></tr><tr><td class="tr-caption" style="text-align: center;">Fundamental (<a href="http://arxiv.org/abs/1303.4752" target="_blank">trans-Planckian</a>) large spins are expected to decay into<br />many small spins under the dynamics. An <a href="http://arxiv.org/abs/1604.06023" target="_blank">explicit calculation</a> showing<br /> this has been given now within group field theory. At the same time,<br />one can coarse grain the many small spins into few large spins to have<br />an effective continuum description. The precise relation between those<br />two, a priori distinct large spin regimes is so far unclear. </td></tr></tbody></table><div style="font-family: Helvetica; font-size: 12px; line-height: normal;"><br /></div><div style="font-family: Helvetica; font-size: 12px; line-height: normal;">The fundamentally important issue of low and high spins in the dynamics of LQG has been discussed in <a href="http://relatively-quantum.bodendorfer.eu/2016/04/updates-on-some-criticisms-of-loop.html" target="_blank">previous</a> <a href="http://relatively-quantum.bodendorfer.eu/2016/02/what-does-it-mean-to-derive-lqc-from-lqg.html" target="_blank">posts</a>. In short, large geometries can be described using either many low or few large quantum numbers (SU(2) spins), but the respective dynamics needs to be interpreted with care. In particular, using large spins to describe continuum geometries requires to understand the renormalisation group flow of the theory. Most work in LQG has so far been in the context of large spins (without considering renormalisation), where calculations simplify drastically due to the availability certain asymptotic formulae for the SU(2) recouping coefficients with nice geometric interpretations. However, there seems to be some progress now on the low spin front. </div><a name='more'></a><br /><div style="font-family: Helvetica; font-size: 12px; line-height: normal;">Last month, <a href="http://arxiv.org/abs/1604.06023" target="_blank">Steffen Gielen showed in a paper</a> that a low spin regime dynamically emerges within the group field theory framework. <a href="http://arxiv.org/abs/1408.7112" target="_blank">Group field theory</a> (GFT) is a quantum field theory defined on a group manifold and constitutes a quantum field theory <i>of</i> spacetime (as opposed to a quantum field theory <i>on</i> spacetime). Its basic excitations above the “no space” Fock vacuum are the quanta of geometry that one also considers in loop quantum gravity. In fact, spin foam amplitudes can be obtained from the perturbative expansion of group field theories, linking it to the path integral formulation of loop quantum gravity. </div><div style="font-family: Helvetica; font-size: 12px; line-height: normal; min-height: 14px;"><br /></div><div style="font-family: Helvetica; font-size: 12px; line-height: normal;">More precisely, Steffen showed that the group field theory dynamics, in a suitable approximation and for the simplest choice of kinetic term, exponentially suppress all but the lowest spins. The work has been in the context of <a href="http://relatively-quantum.bodendorfer.eu/2016/02/what-does-it-mean-to-derive-lqc-from-lqg.html" target="_blank">deriving loop quantum cosmology from loop quantum gravity</a> and thus naturally relies on some assumptions. A weak coupling limit is used, where the interaction term in the group field theory Lagrangian is neglected. The kinetic term is taken to be a a constant plus the Laplacian on the group (which is well motivated by GFT renormalisation) as well as for a coupled massless scalar field. The dynamics are computed in a hydrodynamic limit using the Gross-Pitaevskii equation. The wave function is taken to be the simplest possible condensate state and the tetrahedra are restricted to be equilateral. Then, for a certain choice of coupling parameters in the group field theory action, the above result follows. For other parameters, no semiclassical geometry seems to emerge. In addition, one has to exclude vanishing spins $j=0$ by hand (which is dynamically stable), as these play a little different role in GFT than in standard LQG. </div><div style="font-family: Helvetica; font-size: 12px; line-height: normal;"><br /></div><div style="font-family: Helvetica; font-size: 12px; line-height: normal;">The calculation is then extended to a more general class of models previously considered <a href="https://arxiv.org/abs/1602.05881" target="_blank">here</a> and <a href="https://arxiv.org/abs/1602.08271" target="_blank">here</a> by Daniele Oriti, Lorenzo Sindoni, and Edward Wilson-Ewing. By adjusting additional parameters, the dominating spin can be set to some value $j_0$. The case $j_0 = 1/2$ obtained already in the simplest case is however favoured by naturalness and also enters the (heuristic) <a href="http://arxiv.org/abs/gr-qc/0607039" target="_blank">derivation</a> of the Hamiltonian constraint in loop quantum cosmology. In any case, these models then agree with the Friedmann dynamics for large volumes of the universe. The effective dynamics of loop quantum cosmology is obtained up to a correction term which is suppressed by the volume of the universe in Planck units. In particular, higher spins are excited in the Planck regime, which is not taken into account in LQC and thus constitutes a genuine full theory correction to the mini-superspace quantisation in LQC. </div><div style="font-family: Helvetica; font-size: 12px; line-height: normal; min-height: 14px;"><br /></div><div style="font-family: Helvetica; font-size: 12px; line-height: normal;">Even despite these assumptions, the result is very interesting and seems for the first time to demonstrate that a low spin regime dynamically emerges from loop quantum gravity, or, more precisely, the group field theory approach to it. This result then underlines the importance of studying the effective dynamics of large spin descriptions of continuum geometries via a renormalisation group analysis starting at the lowest possible spins. Otherwise, a <a href="http://arxiv.org/abs/1303.4752" target="_blank">transplanckian interpretation</a> of the large spin regime seems more appropriate. </div><div style="font-family: Helvetica; font-size: 12px; line-height: normal; min-height: 14px;"><br /></div><div style="font-family: Helvetica; font-size: 12px; line-height: normal;">Previous results where low spins were dominant were computations of black hole entropy. However, these computations are by construction insensitive to the quantum dynamics. </div><br /><div style="font-family: Helvetica; font-size: 12px; line-height: normal; min-height: 14px;"><br /></div>Norberthttp://www.blogger.com/profile/04965554394207041308noreply@blogger.com0tag:blogger.com,1999:blog-2381900080106522441.post-64683596010217432172016-04-25T16:02:00.000+02:002016-04-25T16:05:45.329+02:00Is loop quantum gravity based on discretisations?<table align="center" cellpadding="0" cellspacing="0" class="tr-caption-container" style="margin-left: auto; margin-right: auto; text-align: center;"><tbody><tr><td style="text-align: center;"><a href="https://4.bp.blogspot.com/-H4nsvYEuJDs/Vx4eU1We-zI/AAAAAAAAAbw/ruEkYnXPmvgoxoK5dsuP8ndXxZdruC7pgCLcB/s1600/sum_of_two_spin_networks.jpg" imageanchor="1" style="margin-left: auto; margin-right: auto;"><img alt="Sum of two spin networks for continuum limit of loop quantum gravity" border="0" height="152" src="https://4.bp.blogspot.com/-H4nsvYEuJDs/Vx4eU1We-zI/AAAAAAAAAbw/ruEkYnXPmvgoxoK5dsuP8ndXxZdruC7pgCLcB/s400/sum_of_two_spin_networks.jpg" title="Sum of two spin networks for continuum limit of loop quantum gravity" width="400" /></a></td></tr><tr><td class="tr-caption" style="text-align: center;">Two spin networks, which can be interpreted as Hilbert space elements <br />describing truncations (or discretisations) of general relativity, <br />are summed. What is the physics of such states? </td></tr></tbody></table><br />This post is related to last week’s about <a href="http://relatively-quantum.bodendorfer.eu/2016/04/updates-on-some-criticisms-of-loop.html">criticism of loop quantum gravity</a> and a <a href="http://backreaction.blogspot.com/2016/04/dear-dr-b-why-is-lorentz-invariance-in.html?showComment=1461159421001#c3341633063568452673">comment</a> I found in Sabine Hossenfelder’s blog. Saying that loop quantum gravity is based on discretisations quickly leads one to doubt that Lorentz invariance may be a property of LQG, as happened in the comment. So it seems worth to clear up this issue and precisely say in what context discretisations appear, in what context they don’t, and what this means for the physics that are described by LQG.<br /><div><a name='more'></a><br />The canonical formalism of LQG is most suited to discuss this question, since one has a direct relation to general relativity as the theory which is quantised to obtain LQG. In particular, one really quantises continuum general relativity and the Hilbert space that one obtains thus has to be interpreted as the continuum Hilbert space. However, the elementary excitations on this Hilbert space, <a href="https://arxiv.org/abs/1310.7786">comparable to particles on a Fock space</a>, are discrete quanta of geometry. They are the quantum operators corresponding to certain holonomies and fluxes that one can compute in the classical theory. A finite number of such holonomies however only captures a limited amount of the continuum geometry that is roughly equivalent to a discretisation of GR. Therefore, the (simplest) quantum states that one usually discusses in LQG, which also form a basis of the Hilbert space, have a certain interpretation as discrete geometries. This however doesn’t mean that there cannot exist any continuum states in this Hilbert space, since we can of course take arbitrary linear combination of basis elements, and thus, morally speaking, arbitrary superpositions of lattices. Gaining control over such states and understanding their physics is currently the main open problem in LQG. A computation in a <a href="https://arxiv.org/abs/gr-qc/0405085">simplified toy model</a> explicitly showed that such quantum geometries can be consistent with local Lorentz invariance. <br /><br />In conclusion, the Hilbert space of LQG contains elements which can be interpreted as discrete quantum geometries. In different approaches to LQG, these states are given a more or less fundamental status which might suggest that one is really dealing with a discretisation. However, one always needs to keep in mind that one can arbitrarily superpose such states and that the state of quantum geometry that correctly describes our universe at all scales should be searched for in a suitable continuum limit.<br /><div><br />(As a short remark, this does not mean that states containing only a few quanta of geometry cannot be useful when one is considering certain truncations of the theory, such as cosmology. However, one then has to interpret those states in a coarse grained setting and properly understand the renormalisation group flow which relates the dynamics of continuum states to those of coarse grained few quanta states.) </div></div>Norberthttp://www.blogger.com/profile/04965554394207041308noreply@blogger.com0tag:blogger.com,1999:blog-2381900080106522441.post-34595221896958763382016-04-21T10:55:00.000+02:002016-04-21T10:55:34.232+02:00Updates on some criticisms of loop quantum gravity<table align="center" cellpadding="0" cellspacing="0" class="tr-caption-container" style="margin-left: auto; margin-right: auto; text-align: center;"><tbody><tr><td style="text-align: center;"><a href="https://3.bp.blogspot.com/-T3Ywl-OIYLk/VxiMyww-glI/AAAAAAAAAbY/l_-olg6K5xsUmvQ43oJQVv7J_BVN1mzWwCLcB/s1600/constructive_criticism.png" imageanchor="1" style="margin-left: auto; margin-right: auto;"><img alt="Criticism of loop quantum gravity: Lorentz violations, general relativity limit, ambiguities" border="0" height="288" src="https://3.bp.blogspot.com/-T3Ywl-OIYLk/VxiMyww-glI/AAAAAAAAAbY/l_-olg6K5xsUmvQ43oJQVv7J_BVN1mzWwCLcB/s400/constructive_criticism.png" title="Criticism of loop quantum gravity: Lorentz violations, general relativity limit, ambiguities" width="400" /></a></td></tr><tr><td class="tr-caption"><span style="background-color: white; color: #222222; font-family: Georgia, Utopia, 'Palatino Linotype', Palatino, serif; font-size: 12px;">Image from </span><a href="http://www.mysafetysign.com/constructive-criticism-in-progress-workplace-bullying-sign/sku-s-9268">MySafetySign.com</a></td></tr></tbody></table><div><br /></div><div><br /></div>In this post, we will gather some criticism which has been expressed towards loop quantum gravity and comment on the current status of the respective issues. The points raised here are the ones most serious in my own opinion, and different lists and assessments could be expressed by other researchers. <div><a name='more'></a><br /><br /><h4></h4><h3><ul><li><b>Obtaining general relativity in the appropriate limit</b></li></ul></h3><div><br /></div>The kinematics and dynamics of loop quantum gravity are defined in a ultra high energy quantum gravity regime, where the usual notion of continuum spacetime or the idea of fields propagating on a background do not make sense any more. It is thus of utmost importance to understand how general relativity and quantum field theory on curved spacetime emerges in a suitable limit, and what the quantum corrections are. There does not seem to complete agreement on how such a limit should be constructed, and depending on the route chosen, one finds different statements about the status of this endeavour in the literature. The level of complexity of this task can be compared having a theory of atoms, and the aim to compute the properties of solids. <br /><br />In order to understand the current status, let us remark that there are two limits which can be taken in order to obtain a spacetime of large scale in loop quantum gravity: large quantum numbers (spins), or many quantum numbers, i.e. very fine spin networks. Much is known about the limit of large spins, where the number of quanta is fixed. Here, one finds strong evidence that the theory reproduces general relativity on large scales both in <a href="http://arxiv.org/abs/gr-qc/0607100" target="_blank">the</a> <a href="http://arxiv.org/abs/gr-qc/0607101" target="_blank">canonical</a> and in <a href="http://arxiv.org/abs/0907.2440" target="_blank">the</a> <a href="http://arxiv.org/abs/1109.0499" target="_blank">covariant</a> approach. The resulting semiclassical picture however corresponds to Regge-gravity on a given lattice which is specified by the underlying graph on which the (coherent) quantum state labelled by the large spins lives. This limit is usually referred to as the “semiclassical” limit in the literature and should not be confused with the following: <br /><br />On the other hand, one can leave the quantum numbers arbitrary, in particular maximally small, and only increase the number of quanta. This corresponds to a continuum limit and it should be a priori preferred over the large spin limit in my opinion. In particular, the large spin and continuum limit do not need to commute and may in principle lead to different physics, even on macroscopic scales. The problem with this approach is that we know only very little about the dynamics in this sector of the theory, apart from several concrete proposals for its implementation. The dynamics on large scales is then expected to emerge via a coarse graining procedure. More discussion on this point of view can be found <a href="http://arxiv.org/abs/1409.1450" target="_blank">here</a>. See also this <a href="http://arxiv.org/abs/1604.06023v1" target="_blank">brand new paper</a> for a dynamical emergence of such a sector consistent with FRW cosmology. <br /><br />As an additional subtlety, we can consider arbitrary superpositions of spin networks, in other words we can have quantum superpositions of “lattices”. The impact on the dynamics of this feature is so far unclear and may strongly depend on the regularisation details of the Hamiltonian, e.g. whether it is graph preserving or not, and thus superselecting. <div><br /></div><div>Concerning a limit to obtain quantum field theory on curved spacetimes, we point out these <a href="http://arxiv.org/abs/gr-qc/0207030" target="_blank">pioneering</a> <a href="http://arxiv.org/abs/1504.02171" target="_blank">works</a>.<br /><br />To conclude, the situation of whether general relativity emerges in the continuum limit is so far unclear, whereas there is strong evidence for a Regge-truncation thereof emerging in the large spin limit. Whether one is satisfied with one or the other limit, or a combination of both, also depends on the following problem. </div><div><br /><br /><h3><ul><li><b>Local Lorentz invariance</b></li></ul></h3></div><div><br /> It is sometimes suggested that loop quantum gravity is not locally Lorentz invariant in the sense that modified dispersion relations might arise which could be in conflict with observation. Unfortunately, our current understanding of loop quantum gravity does not allow us to answer whether there are Lorentz violations, and how severe they might be. In order to make a meaningful statement, one would essentially have to identify a quantum state corresponding to Minkowski space, which should be thought of as a (possibly infinite) superposition of lattices, put matter fields thereon, and track their dynamics, including back-reaction, on a coarse grained scale where geometry can already be considered smooth. This is a formidable task, and currently out of reach not because of lacking proposals for how to define the problem, but mainly due to computational complexity. <br /><br />In order to judge certain statements that one might find in the literature or on the internet, one should keep the following in mind to avoid confusion: <br /></div><div><br /></div><div><b>Discrete eigenvalues of geometric operators don't imply Lorentz violations</b></div><div><b><br /></b> One might naively think that discrete eigenvalues of geometric operators violate special relativity: if an observer at rest measures a certain discrete eigenvalue of, say, an area, what does another observer measure who is not at rest? The short answer is that he might in principle measure any value for the area, as long as it is in the (discrete) spectrum of the area operator. However, the expectation value can still transform properly according to special relativity. A well-known example of this is the theory of angular momentum: while the eigenvalues of one of the components of the angular momentum are always (half)-integers, expectation values transform properly according to the continuous rotation symmetry. This point has been made for example <a href="http://arxiv.org/abs/gr-qc/0205108" target="_blank">here</a>, with further discussion <a href="http://arxiv.org/abs/gr-qc/0405085" target="_blank">here</a>. Similar conclusions are also drawn in <a href="http://journals.aps.org/pr/abstract/10.1103/PhysRev.71.38" target="_blank">other</a> <a href="http://arxiv.org/abs/gr-qc/0311055" target="_blank">contexts</a>. <br /></div><div><br /></div><div><b>Internal gauge groups do not determine isometries of the spacetime </b></div><div><b><br /></b>Different formulations of loop quantum gravity, canonically or covariant, use different <i>internal</i> gauge groups. The analogue of these groups in QCD is thus SU(3), and not the Lorentz group, which is a global symmetry of Minkowski space. </div><div>While the covariant path integral formulations of the Lorentzian theory use either <a href="http://arxiv.org/abs/1012.1739v3" target="_blank">SL(2, C)</a> or <a href="http://arxiv.org/abs/0711.0146" target="_blank">SU(2)</a> in a gauge-fixed version, the Lorentzian canonical theory in 3+1 dimensions can be formulated using either <a href="http://arxiv.org/abs/gr-qc/9410014" target="_blank">SU(2)</a> [45], SO(1,3) (see <a href="http://arxiv.org/abs/gr-qc/0201087" target="_blank">here</a>, <a href="http://arxiv.org/abs/0811.1916" target="_blank">here</a>, <a href="http://arxiv.org/abs/1103.4057" target="_blank">here</a>, and <a href="http://arxiv.org/abs/1105.3703" target="_blank">here</a>), or <a href="http://arxiv.org/abs/1105.3703" target="_blank">SO(4)</a>. This is because one is coding the spatial metric and its momentum in a connection, whereas the signature of spacetime in the canonical formalism is determined by the Hamiltonian constraint, more precisely a relative sign between two terms. In fact, the structure of spacetime, coded in the hypersurface deformation algebra, is already set at the level of metric variables, and completely insensitive of the additional gauge redundancy that one introduces by passing to connection variables. Also, it does not matter for this whether the connection that one uses can be interpreted as the pullback of some manifestly covariant spacetime connection. While it is a possibility that only a certain choice of variables or internal gauge group leads to a consistent quantum theory in agreement with current bounds on Lorentz violations, such a conclusion cannot be drawn given our current understanding of the theory. </div><div><br /></div><div><b>At which order do we expect possible Lorentz violations? </b></div><div><br />In order to parametrise the violation of Lorentz invariance in a model-independent way, one usually constrains the free parameters $c_n$ in a modified dispersion relation </div><div><div>$$ E^2 = m^2 + p^2 + \sum_{n\geq 3} c_n \frac{p^n}{E_{\text{pl}}^n} $$</div></div><div>where $E_{\text{pl}} = \sqrt{\hbar c / G}$ is the Planck mass. It is worthwhile to formulate a general expectation at what order one expects the first quantum corrections to appear. The two reasonable alternatives here are n = 3 or n = 4, with the difference being a first quantum correction in $\sqrt{\hbar}$ or in $\hbar$. While an appropriate calculation as outlined above will finally have to decide this question, we can make two observations. First, in the case of loop quantum cosmology, where we know how to compute the quantum corrections to the classical theory, we obtain a correction of the order $\hbar$, i.e. the effective Friedmann equation </div><div>$$ H^2 \sim \rho \left(1-\frac{\rho}{\rho_{\text{crit}}} \right), ~~~ \rho_{\text{crit}} \sim \frac{1}{G^2 \hbar} $$</div><div>Second, the concept of area has a much more fundamental status in loop quantum gravity than that of length, and one would thus expect quantum corrections as an expansion in $l_{\text{pl}}^2 = \hbar G / c^3$, rather than $l_{\text{pl}}$. Both of these observations hint that one would expect that a first non-vanishing correction in the dispersion relation should appear at order n=4. </div><div><br /></div><div><a href="http://arxiv.org/abs/1304.5795" target="_blank"> Experimentally</a>, it turns out that there are very strong constraints on the n = 3 terms, whereas constraints on n = 4 are much weaker, yet still restrictive, and currently still plagued by some astrophysical uncertainties. Thus, even if one expects Lorentz- violating effects to arise from loop quantum gravity at order n = 4, this is not necessarily in conflict with current experiments. Still, the stringent bounds put by experiment might rule out loop quantum gravity once we will be able to properly derive Lorentz violations from it. </div><div><br /><br /><h3><ul><li><b>Testability and ambiguities</b></li></ul></h3></div><div><br /> A general problem for theories of quantum gravity is to come up with testable predictions which are independent of free parameters in the theory that can be tuned in order to hide any observable effect below the measurement uncertainty. Furthermore, one would like to have a uniquely defined fundamental theory whose dynamics depend only on a finite number of free parameters. <br /><br />In loop quantum cosmology, much progress towards predictions for observable effects <a href="http://arxiv.org/abs/1302.0254" target="_blank">have</a> <a href="http://arxiv.org/abs/1504.07559" target="_blank">been</a> <a href="http://arxiv.org/abs/1510.08766" target="_blank">made</a>, however the choice of parameters in the models, such as the e-foldings during inflation, can so far hide any observable effects. Also, there are <a href="http://arxiv.org/abs/1602.04452" target="_blank">different approaches</a> to the dynamics of cosmological perturbations. <br /><br /><div>Within full loop quantum gravity (and also loop quantum cosmology), the Barbero-Immirzi parameter $\beta$, a free real parameter entering, e.g., the spectra of geometric operators, constitutes a famous ambiguity. It enters the classical theory in a canonical transformation which is not implementable as a unitary transformation or even an algebra automorphism at the quantum level and thus constitutes a quantisation ambiguity. Since this parameter can enter physical observables, one would like to fix it by an experiment or derive its (only consistent) value by theoretical means. An example for how to fix it by theoretical means is to consider black hole entropy computations and match them to the expected Bekenstein-Hawking entropy. Within the <a href="http://arxiv.org/abs/gr-qc/0005126" target="_blank">original approach</a> to black hole entropy from loop quantum gravity, this gives a certain value for $\beta$, however this computation neglects a possible running of the gravitational constant, i.e. it identifies the high and low energy Newton constants. More recently, it has been observed that the Bekenstein-Hawking entropy can also be reproduced by an <a href="http://arxiv.org/abs/1212.4060" target="_blank">analytic continuation</a> of $\beta$ to the complex self-dual values $\pm i$, which interestingly also <a href="http://arxiv.org/abs/1303.4752" target="_blank">agrees</a> with a computation of the effective action. In fact, the classical theory is easiest when expressed in self-dual variables, so that it might turn out that the value $\beta = \pm i$ could be favoured also in the quantum theory. The current problem is however that the quantum theory is ill-defined for complex $\beta$ and the above mentioned results were obtained via analytic continuation from real beta.</div><br />In addition to quantisation ambiguities resulting from the choice of variables, as above (see also <a href="http://relatively-quantum.bodendorfer.eu/2016/03/yang-mills-analogues-of-ambiguities-in.html" target="_blank">this</a> and <a href="http://relatively-quantum.bodendorfer.eu/2016/03/are-spectra-of-lqg-geometric-operators.html" target="_blank">this post</a>), there are quantisation ambiguities in the regularisation of the Hamiltonian constraint, and thus the dynamics of the theory. These go somewhat beyond factor ordering, as the techniques used in regularising the Hamiltonian also involve classical Poisson bracket identities which are used to construct otherwise ill-defined operators. The requirement of anomaly freedom of the quantum constraint algebra already removed many of those ambiguities in <a href="http://arxiv.org/abs/gr-qc/9606089" target="_blank">Thiemann’s original construction</a>. However, the precise notion of anomaly freedom has been <a href="arxiv:hep-th/0501114" target="_blank">criticised</a> on the ground that it corresponds to a certain “on-shell” notion, which is however the one that makes sense in the context of Thiemann's construction. More recent work based on a slightly changed quantisation seems to make significant progress towards the goal of implementing a satisfactory “off-shell” version of the quantum constraint algebra, at least <a href="http://arxiv.org/abs/1105.0636" target="_blank">in</a> <a href="http://arxiv.org/abs/1210.6869" target="_blank">simplified</a> <a href="http://arxiv.org/abs/1204.0211" target="_blank">toy</a> <a href="http://arxiv.org/abs/1401.0931" target="_blank">models</a>. The possible regularisations then seem to be very constrained, although no unique prescription has emerged so far. <br /><br />To conclude, it is so far not possible to extract definite predictions from full loop quantum gravity due to the existence of ambiguities in its construction, whose influence on the dynamics is not well understood. However, there is promising recent work on the removal of such ambiguities, which could eventually allow for clear predictions which would allow to falsify the theory. <div class="page" title="Page 11"><div class="layoutArea"><div class="column"> </div></div></div></div></div>Norberthttp://www.blogger.com/profile/04965554394207041308noreply@blogger.com5tag:blogger.com,1999:blog-2381900080106522441.post-72367036659464730892016-04-12T15:46:00.000+02:002016-04-13T11:11:34.905+02:00Approaches to quantum gravity<div class="separator" style="clear: both; text-align: center;"><a href="https://4.bp.blogspot.com/-CrpDfBxLSFU/Vwz76MUnwKI/AAAAAAAAAbA/KF2fMBLpRMEU5_fuIUCj5FvQtKHthVyZgCLcB/s1600/approaches_to_quantum_gravity.jpg" imageanchor="1" style="margin-left: 1em; margin-right: 1em;"><img border="0" height="245" src="https://4.bp.blogspot.com/-CrpDfBxLSFU/Vwz76MUnwKI/AAAAAAAAAbA/KF2fMBLpRMEU5_fuIUCj5FvQtKHthVyZgCLcB/s400/approaches_to_quantum_gravity.jpg" width="400" /></a></div><div><br /></div><div><br /></div>Again as a part of a lecture series in preparation, I compiled a list of the currently largest existing research programmes aimed at finding a quantum theory of gravity (while unfortunately omitting <a href="https://en.wikipedia.org/wiki/Quantum_gravity" target="_blank">some smaller</a>, yet very interesting, approaches). A much more extensive account is given in <a href="http://www.cambridge.org/us/academic/subjects/physics/cosmology-relativity-and-gravitation/approaches-quantum-gravity-toward-new-understanding-space-time-and-matter">here</a>. For an historical overview, I recommend <a href="http://arxiv.org/abs/gr-qc/0006061">this paper</a>.<br /><a name='more'></a><br /><br /><b>Semiclassical gravity </b><br /><br />Semiclassical gravity is a first step towards quantum gravity, where matter fields are treated using full quantum field theory, while the geometry remains classical. However, semiclassical gravity goes beyond quantum field theory on curved spacetimes: the energy-momentum tensor determining the spacetime geometry via Einstein’s equations is taken to be the expectation value of the QFT energy-momentum tensor. The state in which this expectation value is evaluated in turn depends on the geometry, and one has to find a self-consistent solution. Many of the <a href="http://arxiv.org/abs/gr-qc/9602052" target="_blank">original problems</a> of semi-classical gravity have been addressed recently and the theory can be applied <a href="http://arxiv.org/abs/0801.2850" target="_blank">in practise</a>. <br /><br /><br /><b>Ordinary quantum field theory </b><br /><br />The most straight forward approach to quantising gravity itself is to use ordinary perturbative quantum field theory to quantise the deviation of the metric from a given background. While it turned out that general relativity is non-renormalisable in the standard picture, it is possible to use <a href="http://arxiv.org/abs/1209.3511" target="_blank">effective field theory techniques</a> in order to have a well-defined notion of perturbative quantum gravity up to some energy scale lower than the Planck scale. Ordinary effective field theory thus can describe a theory of quantum gravity at low energies, whereas it does not aim to understand quantum gravity in extreme situations, such as cosmological or black hole singularities. <br /><br /><br /><b>Supergravity</b> <br /><br />Supergravity has been invented with the hope of providing a unified theory of matter and geometry which is better behaved in the UV than Einstein gravity. As opposed to standard supersymmetric quantum field theories, supergravity exhibits a local supersymmetry relating matter and gravitational degrees of freedom. In the symmetry algebra, this fact is reflected by the generator of local supersymmetries squaring to spacetime-dependent translations, i.e. general coordinate transformations. <br /><br />While the local supersymmetry generally improved the UV behaviour of the theories, it turned out that also supergravity theories were <a href="http://arxiv.org/abs/hep-th/9905017" target="_blank">non-renormalisable</a>. The only possible exception seems to be N = 8 supergravity in four dimensions, which is known to be <a href="http://arxiv.org/abs/0905.2326" target="_blank">finite at four loops</a>, but it is unclear what happens beyond. Nowadays, supergravity is mostly considered within string theory, where 10-dimensional supergravity appears as a low energy limit. Due to its finiteness properties, string theory can thus be considered as a UV-completion for supergravity. Moreover, 11-dimensional supergravity is considered as the low-energy limit of M-theory, which is conjectured to have the 5 different string theories as specific limits. <br /><br /><br /><b>Asymptotic safety </b><br /><br /><div>The underlying idea of <a href="http://arxiv.org/abs/1202.2274" target="_blank">asymptotic safety</a> is that while general relativity is perturbatively non- renormalizable, its renormalisation group flow might possess a non-trivial fixed point where the couplings are finite. In order to investigate this possibility, the renormalisation group equations need to be solved. For this, the “theory space”, i.e. the space of all action functionals respecting the symmetries of the theory, has to be suitably truncated in practise. Up to now, much evidence has been gathered that general relativity is asymptotically safe, <a href="http://arxiv.org/abs/1311.2898" target="_blank">including matter couplings</a>, however always in certain truncations, so that the general viability of the asymptotic safety scenario has not been rigorously established so far. Also, one mostly works in the Euclidean. At microscopic scales, one finds a fractal-like effective spacetime and a reduction of the (spectral) dimension from 4 to 2 (or 3/2, which is <a href="http://arxiv.org/abs/1104.5505" target="_blank">favoured by holographic arguments</a>, depending on the calculation). Moreover, a <a href="http://arxiv.org/abs/0912.0208" target="_blank">derivation of the Higgs mass</a> has been given in the asymptotic safety scenario, correctly predicting it before its actual measurement. <br /><br /><br /><b>Canonical quantisation: Wheeler-de Witt </b><br /><br />The oldest approach to full non-perturbative quantum gravity is the Wheeler-de Witt theory, i.e. the canonical quantisation of the Arnowitt-Deser-Misner formulation of general relativity. In this approach, also known as quantum geometrodynamics, one uses the spatial metric and its conjugate momentum as canonical variables. The main problems of the Wheeler-de Witt approach are of mathematical nature: the Hamiltonian constraint operator is extremely difficult to define due to its non-linearity and a Hilbert space to support is is not known. It is therefore strongly desirable to find new canonical variables for general relativity in which the quantisation is more tractable. While the so called “problem of time”, i.e. the absence of a physical background notion of time in general relativity, is present both in the quantum and the classical theory, possible ways to deal with it are <a href="http://arxiv.org/abs/gr-qc/9210011" target="_blank">known</a> and <a href="http://arxiv.org/abs/1206.3807" target="_blank">continuously developed</a>. <br /><br /><br /><b>Euclidean quantum gravity </b><br /><br />In Euclidean quantum gravity, a Wick rotation to Euclidean space is performed, in which the gravity path integral is formulated as a path integral over all metrics. Most notably, this approach allows to extract thermodynamic properties of black holes. In practise, the path integral is often approximated by the exponential of the classical on-shell action. Its main problematic aspect is that the Wick rotation to Euclidean space is well defined only for a certain limited class of spacetimes, and in particular dynamical phenomena are hard to track. An overview can be found <a href="http://jdsweb.jinr.ru/record/51903/files/Quantum%20Gravitation.pdf" target="_blank">here</a>.<br /><br /><br /><b>Causal dynamical triangulations </b><br /><br />Causal dynamical triangulations <a href="http://arxiv.org/abs/1302.2173" target="_blank">(CDT)</a> is a non-perturbative approach to rigorously define a path integral for general relativity based on a triangulation. It grew out of the Euclidean dynamical triangulations programme, which encountered several difficulties in the 90’s, by adding a causality constraint on the triangulations. The path integral is then evaluated using Monte Carlo techniques. The phase diagram of CDT in four dimensions exhibits three phases, one of which is interpreted as a continuum four-dimensional universe. Moreover, the transition between this phase and one other phase is of second order, hinting that one might be able to extract a genuine continuum limit. More recently, also Euclidean dynamical triangulations has been reconsidered and evidence for a good semiclassical limit has been <a href="http://arxiv.org/abs/1604.02745" target="_blank">reported</a>. <br /><br /><br /><b>String theory </b><br /><br /><a href="https://en.wikipedia.org/wiki/String_theory" target="_blank">String theory</a> was initially conceived as a theory of the strong interactions, where the particle concept is replaced by one-dimensional strings propagating in some background spacetime. It was soon realised that the particle spectrum of string theory includes a massless spin 2 excitation, which is identified as the graviton. Moreover, internal consistency requirements demand (in lowest order) the Einstein equations to be satisfied for the background spacetimes. String theory thus is automatically also a candidate for a quantum theory of gravity. The main difference of string theory with the other approaches listed here is thus that the quantisation of gravity is achieved via unification of gravity with the other forces of nature, as opposed to considering the problem of quantum gravity separately. <br /><br />The main problem of string theory is that it seems to predict the wrong spacetime dimension: 26 for bosonic strings, 10 for supersymmetric strings, and 11 in the case of M-theory. In order to be compatible with the observed 3 + 1 dimensions at the currently accessible energies, one therefore needs to compactify some of the extra dimensions. In this process, a large amount of arbitrariness is introduced and it has remained an open problem to extract predictions from string theory which are independent of the details of the compactification. Also, our knowledge about full non-perturbative string theory is limited, with the main exceptions of D-branes and using AdS/CFT as a definition of string theory. <br /><br /><br /><b>Gauge / gravity </b></div><div><b><br /></b>The gauge / gravity correspondence, also known as AdS/CFT, has <a href="http://arxiv.org/abs/hep-th/9711200" target="_blank">grown out of string theory</a>, but was later recognised to be applicable more widely. Its statement is a (in most cases conjectured) duality between a quantum gravity theory on some class of spacetimes, and a gauge theory living on the boundary of the respective spacetime. Once a complete dictionary between gravity and field theory computations is known, one can in principle use the gauge / gravity correspondence as a definition of quantum gravity on that class of spacetimes. <br /><br />The main problem of gauge / gravity as a tool to understand quantum gravity is the lack of a complete dictionary between the two theories, in particular for local bulk observables. Also, it is usually very hard to find gauge theory duals of realistic gravity theories already at the classical gravity level (i.e. in an appropriate field theory limit), and many known examples are very special supersymmetric theories. <br /><br /><br /><b>Loop quantum gravity </b></div><div><b><br /></b>Loop quantum gravity originally started as a canonical quantisation of general relativity, in the spirit of the Wheeler-de Witt approach, however based on connection variables parametrising the phase space of general relativity, e.g. the Ashtekar-Barbero variables based on the gauge group SU(2). The main advantage of these variables is that one can rigorously define a Hilbert space (containing Wilson-"loops" of the connection, hence the name) and quantise the Hamiltonian constraint. The application of the main technical and conceptual ideas of loop quantum gravity to quantum cosmology resulted in the subfield of <a href="http://arxiv.org/abs/1108.0893" target="_blank">loop quantum cosmology</a>, which offers a quantum gravity resolution of the big bang singularity and successfully makes <a href="http://arxiv.org/abs/1309.6896" target="_blank">contact to observation</a>. <br /><br />The main problem of loop quantum gravity is to obtain general relativity in a suitably defined classical limit. In other words, the fundamental quantum geometry present in loop quantum gravity has to be coarse grained in order to yield a smooth classical spacetime, while the behaviour of matter fields coupled to the theory should be dictated by standard quantum field theory on curved spacetimes in this limit. The situation is thus roughly the opposite of that in string theory. Also, it has not been possible so far to fully constrain the regularisation ambiguities that one encounters in quantising the Hamiltonian constraint. In order to cope with these issues, a path integral approach, known as spin foams, has been developed, as well as the group field theory approach, which is well suited for dealing with the question of renormalisation. <br /><div class="page" title="Page 4"><div class="layoutArea"><div class="column"></div></div></div></div>Norberthttp://www.blogger.com/profile/04965554394207041308noreply@blogger.com5tag:blogger.com,1999:blog-2381900080106522441.post-45848212475438231892016-03-25T12:31:00.000+01:002016-04-08T05:46:26.211+02:00How does loop quantum cosmology work?<table align="center" cellpadding="0" cellspacing="0" class="tr-caption-container" style="margin-left: auto; margin-right: auto; text-align: center;"><tbody><tr><td style="text-align: center;"><a href="https://1.bp.blogspot.com/-STbA_hY4x7o/VvTxfXe6vcI/AAAAAAAAAac/BLor-drPFe8ty5htNQARsBtadLU-nniJg/s1600/loop_quantum_cosmology_big_bounce_big_bang.jpg" imageanchor="1" style="margin-left: auto; margin-right: auto;"><img alt="Loop quantum cosmology big bounce vs Wheeler-de Witt big bang" border="0" height="268" src="https://1.bp.blogspot.com/-STbA_hY4x7o/VvTxfXe6vcI/AAAAAAAAAac/BLor-drPFe8ty5htNQARsBtadLU-nniJg/s400/loop_quantum_cosmology_big_bounce_big_bang.jpg" title="Loop quantum cosmology big bounce vs Wheeler-de Witt big bang" width="400" /></a></td></tr><tr><td class="tr-caption">The evolution of the expectation value of the volume v of the universe is plotted. <br />The blue and orange lines are the expanding and contracting branches in the <br />Wheeler-de Witt theory. The green curve follows from loop quantum cosmology <br />and exhibits a quantum bounce close to Planck density. </td></tr></tbody></table><div><br /></div><div><br /></div>These days I have been working on lecture notes for an introductory lecture series on loop quantum gravity. An <a href="http://arxiv.org/abs/gr-qc/0702030" target="_blank">introductory article</a> by Abhay Ashtekar introduced this subject via a discussion on loop quantum cosmology (LQC), where already many of the essential features of loop quantum gravity are present and can be studied in a simplified setting. I think that this is a very useful pedagogical approach and I also wanted to incorporate it into my lectures. I just finished my first draft of a lecture about this subject, focussing on a specific exactly soluble LQC model and its comparison to a similar quantisation using the Wheeler-de Witt framework. Mostly I follow the <a href="http://arxiv.org/abs/0710.3565" target="_blank">original paper,</a> with some additional comments, slight rearrangements, and omission of more advanced material that is not necessary in an introductory course in my point of view. The current draft is available <a href="https://drive.google.com/file/d/0B30fkrPRtkVRanJCa1ZESjkwVzQ/view?usp=sharing" target="_blank">here</a>, and comments are always welcome. <br /><br />The short version goes as follows:<br /><a name='more'></a><br />In both cases, Wheeler-de Witt and loop quantum cosmology, one quantises general relativity minimally coupled to a massless scalar field in a homogeneous and isotropic setting. At the classical level, one constructs a Dirac observable corresponding to the volume of the universe at a specific point in time specified by the value that the scalar field takes. As is well known, such models lead to either big bang or big crunch singularities. <br /><br />One can now quantise using Wheeler-de Witt techniques (both the spatial volume and its conjugate momentum are well defined operators) and show that one can reduce the problem of finding the physical Hilbert space to that of solving a 1+1-dimensional Klein-Gordon equation due to a suitable choice of variables. On the physical Hilbert space, one can represent a Dirac observable corresponding to the volume at some specific value of the internal scalar field time $\phi$. One sees that the expectation value of these observables follows the classical trajectories, i.e. $V_0 e^{\pm \phi}$. A more <a href="http://arxiv.org/abs/1006.3837" target="_blank">in depth analysis</a> based on consistent histories (not detailed in the lecture) also shows that superpositions of contracting and expanding branches do not lead to singularity resolution (see however <a href="http://arxiv.org/abs/1501.04181" target="_blank">this paper</a> based on the Bohmian approach to quantum theory). <br /><br />In loop quantum cosmology on the other hand one finds some small, but important differences in the computation. Due to the loop quantum gravity inspired Hilbert space, the spatial volume is a well defined operator, whereas its conjugate momentum $b$ exists only in exponentiated form $e^{i n b}$, $n \in \mathbb Z$. This reflects the underlying discrete quantum geometry. Therefore, one needs to regularise $b$ in terms of such ``U(1)-holonomies'', with the simplest choice being $\sin(b)$. Since we are working in Planck units, $b$, corresponding on-shell to the matter energy density, is small and $\sin(b)$ is an excellent approximation to $b$ if we are far away from the Planck density. At Planck density however, a departure from classical physics can be expected. Indeed, passage to the Klein-Gordon equation now requires a slightly different choice of variables, leading to a different form of the operator corresponding to the spatial volume on the physical Hilbert space. It turns out that the expectation value of this operator behaves as $V_{\text{min}} \cosh(\phi)$. The big bang / big crunch singularities are thus substituted by a quantum bounce.Norberthttp://www.blogger.com/profile/04965554394207041308noreply@blogger.com1tag:blogger.com,1999:blog-2381900080106522441.post-53117595487110455862016-03-15T15:58:00.000+01:002016-03-15T15:58:14.421+01:00Yang-Mills analogues of the ambiguities in defining LQG geometric operators<table align="center" cellpadding="0" cellspacing="0" class="tr-caption-container" style="margin-left: auto; margin-right: auto; text-align: center;"><tbody><tr><td style="text-align: center;"><a href="https://2.bp.blogspot.com/-00MEm1PoEj8/VughofKSixI/AAAAAAAAAaM/4LhwPcGtjPcPmNwU9rVAp_oXwLJ4jP5IQ/s1600/ambiguity_geometric_operator_loop_quantum_gravity_yang_mills.jpg" imageanchor="1" style="margin-left: auto; margin-right: auto;"><img alt="Ambiguity in the geometric operators in loop quantum gravity from changing connection variables" border="0" height="270" src="https://2.bp.blogspot.com/-00MEm1PoEj8/VughofKSixI/AAAAAAAAAaM/4LhwPcGtjPcPmNwU9rVAp_oXwLJ4jP5IQ/s400/ambiguity_geometric_operator_loop_quantum_gravity_yang_mills.jpg" title="Ambiguity in the geometric operators in loop quantum gravity from changing connection variables" width="400" /></a></td></tr><tr><td class="tr-caption" style="text-align: center;">Changing the connection variables underlying loop quantum gravity<br />also changes the geometric operators. They measure geometry with respect<br />to the metric encoded in the Yang-Mills electric field $E^a_i$. </td></tr></tbody></table><b>tl;dr</b>: In some cases there are such analogues, but they are rather awkward. <br /><br />A comment to a <a href="http://relatively-quantum.bodendorfer.eu/2016/03/are-spectra-of-lqg-geometric-operators.html">recent post</a> on the current status of the issue of the spectra of geometric operators in loop quantum gravity raised the question of whether such ambiguities can also be found in Yang-Mills theory. The question if of course very interesting, however I am not aware of any reference commenting on it. So let me try.<br /><a name='more'></a><br />To begin with, let us recall what is the issue in the context of loop quantum gravity. There, since one is in the context of general relativity, observables (= gauge invariant quantities) have to be constructed. One way to do this is to construct an observable algebra at the classical level and then to quantise it. Such a choice of observable algebra then effectively leads to a specific choice of quantisation variables, which as a result may change the properties of geometric operators, e.g. their spectra. <br /><br />An instructive example is provided by considering general relativity coupled to a scalar field. Here, the canonical variables are the spatial metric $q_{ab}$, its conjugate momentum $P^{ab}$, the scalar field $\phi$, as well as its momentum $\pi$. One can now construct connection variables in the gravitational sector as follows. We first extend our theory to incorporate a local SO(3) gauge invariance by going over to the variables $e_{ai}$ and $K_{ai}$, where $e_{ai}$ is simply a tetrad for the metric, $q_{ab} = e_{ai} e_{b}^i$, and $K_{ai} e_{b}^i = K_{ab}$ defines the extrinsic curvature (entering $P^{ab}$). Instead of $e_{ai}$, we will actually use the densitised co-tetrad $E^{a}_j$, which is conjugate to $K_a^i$. In order to erase the additional degrees of freedom, we have to introduce the Gauss law $K_{a[i} E^{b}_{j]} = 0$. <br /><br />The key step in order to arrive at the connection variables underlying loop quantum gravity is now the following. From the tetrad, we construct the spin connection $\Gamma_a^i$, which annihilates the tetrad in a suitably defined covariant derivative. We can now construct the connection $A_{a}^i = \Gamma_a^i + \beta K_{a}^i$, which turns out to have canonical brackets with $E^{a}_i / \beta$. Here, $\beta$ is a priori a non-zero real number that we are free to choose. We can now proceed to the quantum theory, where the configuration space is the space of all holonomies obtained from $A_a^i$. <br /><br />If we now consider the area operator, then its eigenvalues will scale with $\beta$. This follows since fluxes in the quantum theory are constructed from $E^{a}_i / \beta$, while the physical geometry is measured only by $E^{a}_i$. However, it is the (squared) fluxes rescaled with $\beta$ which act via multiplication with $\sqrt{j(j+1)}$ on spin network edges labelled by the spin $j$. Therefore, the real number $\beta$ (known as the Barbero-Immirzi parameter) already introduces an ambiguity. <br /><br />Let’s come back now to the scalar field. Instead of just taking $\beta$ to be a real number, we could also take it to be a function of the scalar field. In order to ensure canonicity of the variables, some changes in the scalar field momentum $\pi$ are then necessary, however this introduces no problems. Then, the area operator is changed in such a way that it does not measure area any more, but $\beta(\phi) \cdot \text{area}$. An operator measuring area could then be recovered by inserting an appropriate operator for the scalar field. <br /><br />While this last construction may seem a bit awkward, it can in fact be well motivated: The choice $\beta = \phi^2$ follows if one wants an observable algebra which is defined in relation to a constant mean curvature gauge fixing in the context of a conformally coupled scalar field, as discussed <a href="http://arxiv.org/abs/1203.6525">here</a> in detail. <br /><br />Let us now come back to the issue of a similar phenomenon in Yang-Mills theory. As we have seen above, the appearance of such ambiguities in LQG is related to the fact that the connection used there is assembled from an affine piece, the spin connection, and a tensorial piece, the extrinsic curvature. The tensorial piece can be modified by an arbitrary scalar function. <br /><br />Without such a split however, a similar ambiguity does not occur. Consider for example the Gauss law $D_a E^a_i = 0$ of Yang-Mills theory. It acts as $A_a^i \rightarrow A_a^i - D_a \lambda^i$. If we would simply rescale $A_a^i$ by a constant, we would immediately find that the transformation properties of $A_a^i$ under the Gauss law have been spoiled, since the affine piece would now be rescaled. Instead, if we rescale the metric as above and then construct the affine piece of the connection from it, the constant would drop and the affine part of the connection would remain intact. In the case of a non-trivial scalar function, the spin connection would change, since it would then be the spin connection with respect to the rescaled metric. But then the new Gauss law would again be intact. <br /><br />So can we make such splits in general? To the best of my knowledge not. In the case of SU(2) Yang-Mills theory in 3 dimensions, we could just repeat the construction outlined above. We could solve the Gauss law and introduce a metric and its conjugate momentum as SU(2) - invariant degrees of freedom. For this, we would need to demand that $E^{ai} E^{b}_i$ is a positive definite 3-metric, something that one naturally demands in GR, but no necessarily in Yang-Mills theory. Then however, the above construction can be repeated and a new connection, based on the rescaled “metric” and its momentum could be performed. <br /><br />The more radical changes in the geometric operators which resulted from reducing the components of the metric via gauge fixing don’t seem to have an analogue in Yang-Mills theory, as there simply is nothing left to gauge fix once one would be at the “metric” level.<br /><br />What about other gauge groups? It <a href="http://arxiv.org/abs/1105.3703">seems</a> that similar constructions are not possible in general, at least when reducing to a metric and its conjugate. The only other working example in 3 dimensions that I know is to use the groups SO(4) or SO(1,3). Then however, the corresponding Yang-Mills electric fields $E^{a}_{IJ}$ with $I,J = 0,1,2,3$ have to be subject to an additional constraint, known as the simplicity constraint $E^{a}_{[IJ} E^{b}_{KL]} = 0$. This is natural in the context of general relativity, but again probably not in the case of Yang-Mills theory. In $D+1$ dimensions, it turns out that SO(D+1) and SO(1,D) work, again subject to the simplicity constraints. <br /><br />To conclude, the reason for the ambiguity in the geometric operators in loop quantum gravity is the freedom in choosing a metric on which the connection variables are based. An example for a good reason to change this metric is the construction of observables in order to access the physical Hilbert space. In Yang-Mills theory on the other hand, one always starts with connection variables, and it is highly unnatural to temporarily pass to similar metric variables in order to construct a different connection. Norberthttp://www.blogger.com/profile/04965554394207041308noreply@blogger.com3tag:blogger.com,1999:blog-2381900080106522441.post-65918650949928302962016-03-11T17:07:00.000+01:002016-03-11T17:07:02.095+01:00Some comments on the properties of observable algebras<table align="center" cellpadding="0" cellspacing="0" class="tr-caption-container" style="margin-left: auto; margin-right: auto; text-align: center;"><tbody><tr><td style="text-align: center;"><a href="https://3.bp.blogspot.com/-z1M6FCmwvws/VuGyXk2o64I/AAAAAAAAAZ4/noxfviwNxmM/s1600/Geodesic_rerouting_in_radial_gauge.jpg" imageanchor="1" style="margin-left: auto; margin-right: auto;"><img border="0" height="248" src="https://3.bp.blogspot.com/-z1M6FCmwvws/VuGyXk2o64I/AAAAAAAAAZ4/noxfviwNxmM/s400/Geodesic_rerouting_in_radial_gauge.jpg" width="400" /></a></td></tr><tr><td class="tr-caption" style="text-align: center;">An example of non-locality in an observable algebra. Observables are <br />defined as fields at the endpoints of geodesics. Changing the metric<br />along the geodesic via $P^{rA}$, the field conjugate to some of the relevant<br />components of the spatial metric, leads to an apparent non-locality due to<br />a rerouting of the geodesic.</td></tr></tbody></table><br /><div>A <a href="http://relq.blogspot.com/2016/03/the-algebra-of-observables-in-gauian.html" target="_blank">recent post</a> contained a talk of mine of a specific construction of observables in general relativity, where a physical coordinate system was specified by the endpoints of certain geodesics. The so constructed coordinates are simply Gaußian normal coordinates and the usual relational construction of observables as fields at a physical point could proceed in the standard manner.<br /><br />The motivation for the underlying paper came from AdS/CFT, where people were interested in constructing <a href="http://arxiv.org/abs/1311.3020" target="_blank">CFT operators corresponding to scalar fields in the bulk</a>, localised at the endpoint of a geodesic. While the scalar fields were argued to commute in this construction, a <a href="http://arxiv.org/abs/1507.07921" target="_blank">contradictory statement</a> was recently made in a perturbative calculation. To settle this question, we upgraded a <a href="http://arxiv.org/abs/1506.09164" target="_blank">calculation referring to spatial geodesics</a>, based on <a href="http://arxiv.org/abs/1403.8062" target="_blank">this seminal work</a>, to the <a href="http://arxiv.org/abs/1510.04154" target="_blank">case of spacetime geodesics</a> considered in the AdS/CFT case. <br /><br />The calculation which we performed illustrates nicely some points about the properties of observables which are often not spelled out, however seem of relevance for researchers interested in quantum gravity and should not be confused. In this post, we will gloss over global problems in defining observables, see e.g. <a href="http://arxiv.org/abs/1508.01947" target="_blank">this paper</a> and references therein for a recent interesting discussion. See also <a href="http://relq.blogspot.com/2016/01/do-we-really-not-have-observables-for-gr.html" target="_blank">this post</a> for an earlier discussion of observables and the control we have on them. <br /><br /><br /><b>1. Structure of the (sub-)algebra of observables </b><br />When we quantise, we always pick some preferred subalgebra of phase space functions that we want to quantise. It is well known that we cannot quantise all functions at the same time, as formalised in the Groenewold-van Hove theorem. Therefore, also in canonical quantum gravity such a choice has to be made, independently of whether we first quantise or first solve the constraints. We are interested here in the latter case, i.e. in the quantisation of a complete (= point separating on the reduced phase space) set of Dirac observables, or equivalently a complete set of phase space functions after gauge fixing the Hamiltonian and spatial diffeomorphism constraints, although similar statements should in principle also hold in the former case. <br />The precise nature of this choice will determine the properties of our observable algebra. In particular, examples can be given where <br /><ol><li>the resulting algebra has a perfectly local structure (e.g. when employing dust to specify a reference frame),</li><li>the resulting algebra is local, but some phase space functions not contained in the complete sub-algebra have non-local commutation relations</li><li>the resulting algebra is non-local</li></ol>Roughly, the following happens. If we localise some field with respect to some locally defined structure, such as the values that four scalar fields take at a point, then the algebra remains local, where local means that Poisson brackets will be proportional to a delta-distribution in the coordinates defined by the scalar field coordinates. Another such example is to use <a href="http://arxiv.org/abs/gr-qc/9409001" target="_blank">dust</a>. We can however also localise some field with respect to a more global structure, such as the <a href="http://arxiv.org/abs/1403.8062" target="_blank">endpoint of a spatial geodesic</a> originating from some observer or the boundary of the spatial slice. Then, phase space functions with a non-vanishing Poisson bracket with components of the metric specifying this geodesic will have non-local (in the coordinates specified by the geodesics) Poisson brackets with fields localised at the endpoints of geodesics, just because they change the geodesic which defines the point where the field is evaluated. However, it is still possible to pick a complete set of such observables which have local Poisson brackets among themselves if we pay attention not to include fields not commuting with the components of the metric determining the path of the geodesics. This is in fact what is happening <a href="http://arxiv.org/abs/1403.8062" target="_blank">here</a>. For the <a href="http://arxiv.org/abs/1510.04154" target="_blank">last case</a>, we simply locate our fields with respect to some extended structure that is specified using non-commuting phase space functions, e.g. a spacetime geodesic. This doesn’t mean that locality breaks down, it simply means that we are considering observables which are smeared over regions of spacetime, and two such regions associated to different localisation points might overlap.<br /><br /><br /><b>2. Locality of the physical Hamiltonian </b><br />Another question is whether the physical Hamiltonian that one derives with respect to a certain choice of time will be non-local. Again, in the case of dust as a reference field, it is local. However, already in the second case above one finds that is non-local, simply because it contains the phase space functions which have non-local Poisson brackets. Since a generic Hamiltonian will contain all fields of the theory, it seems that one has to avoid relational observables with respect to non-local structures if one wants to obtain a local Hamiltonian. However, it should be stressed again that one still might have a complete local observable algebra, even though the Hamiltonian is non-local. A detailed example is given <a href="http://arxiv.org/abs/1506.09164" target="_blank">here</a>.<br /><br /><br /><b>3. Independence of spacetime boundaries</b><br />All arguments made above are independent of the structure of the spacetime at infinity. In particular, the math involved in constructing observables and computing their algebra, see e.g. <a href="http://www.sciencedirect.com/science/article/pii/S0003491684711146" target="_blank">here</a>, <a href="http://arxiv.org/abs/gr-qc/0411013" target="_blank">here</a>, and <a href="http://arxiv.org/abs/1203.6526" target="_blank">here</a>, does not refer to infinity. Also, the fact that the on-shell Hamiltonian constraint is a boundary term is not of relevance here, as it generates evolution via its Hamiltonian vector field, which is non-vanishing on-shell. Once a clock field is chosen on the other hand, one obtains a physical Hamiltonian with respect to that clock which is non-vanishing on-shell. Therefore, as long as one can locally define a clock, one can also have evolution. </div>Norberthttp://www.blogger.com/profile/04965554394207041308noreply@blogger.com1tag:blogger.com,1999:blog-2381900080106522441.post-31252653706884394912016-03-08T15:45:00.000+01:002016-03-08T15:46:31.921+01:00The algebra of observables in Gaußian normal space-(time) coordinates<div class="separator" style="clear: both; text-align: center;"><iframe allowfullscreen="" class="YOUTUBE-iframe-video" data-thumbnail-src="https://i.ytimg.com/vi/FYQARS2iGn8/0.jpg" frameborder="0" height="266" src="https://www.youtube.com/embed/FYQARS2iGn8?feature=player_embedded" width="320"></iframe></div><br /><br />This rerecorded talk was originally given at the spring meeting of the German Physical Society on February 29, 2016. It is based on <a href="http://arxiv.org/abs/1510.04154">this paper</a>, where the algebra of a set of gravity observables constructed using a coordinate system specified by geodesics is computed. My interest in this question, next to general considerations in quantum gravity, comes from the AdS/CFT correspondence, where this construction has been used in the construction of the bulk / boundary dictionary. I plan to comment a little more on the content of the paper in the near future, highlighting some in my point of view important conceptual conclusions on the structure of general relativistic observable algebras.Norberthttp://www.blogger.com/profile/04965554394207041308noreply@blogger.com0tag:blogger.com,1999:blog-2381900080106522441.post-75646678539759192882016-03-05T12:01:00.000+01:002016-03-07T09:12:32.466+01:00Are the spectra of the LQG geometric operators really discrete?<div class="separator" style="clear: both; text-align: center;"><a href="https://4.bp.blogspot.com/-l5q7OdUPTWs/Vtq1rpfL4oI/AAAAAAAAAYg/p7Mb-cCklmU/s1600/Discrete-geometric-operators-loop-quantum-gravity.jpg" imageanchor="1" style="margin-left: 1em; margin-right: 1em;"><img alt="Are the spectra of geometric operators in loop quantum gravity really discrete?" border="0" height="208" src="https://4.bp.blogspot.com/-l5q7OdUPTWs/Vtq1rpfL4oI/AAAAAAAAAYg/p7Mb-cCklmU/s400/Discrete-geometric-operators-loop-quantum-gravity.jpg" title="Are the spectra of geometric operators in loop quantum gravity really discrete?" width="400" /></a></div><div><br /></div><div><br /></div><b>tl;dr</b>: Sometimes yes, sometimes no, depending on how one passes to the physical Hilbert space. <br /><br />The title for this post is shamelessly borrowed from <a href="http://arxiv.org/abs/0708.1721" target="_blank">this paper</a>, where Bianca Dittrich and Thomas Thiemann have discussed this question some time ago, concluding that the answer could be negative at the level of the physical Hilbert space, i.e. after solving the Hamiltonian constraint. Carlo Rovelli then wrote a <a href="http://arxiv.org/abs/0708.2481" target="_blank">rebuttal</a>, arguing that discreteness should remain also at the physical level. Since those papers, some time has passed and new light has been shed on this issue from various angles, to be reviewed in this post.<br /><div><a name='more'></a><br />To begin with, let us briefly recall the area operator in loop quantum gravity. It is constructed roughly as $\text{A}(S) = \int_S \sqrt{ E^i E_i }$ and acts diagonally on spin networks, with an eigenvalue proportional to $l_p^2 \sum_i \sqrt{j_i(j_i+1)}$, where $j_i$ is the spin label of the edges intersecting the surface $S$. The operator thus has a discrete spectrum and a spectral gap. <br /><br />This operator is a priori only defined on the kinematical Hilbert space, where the spatial diffeomorphism constraint and the Hamiltonian constraint still have to be implemented. In particular, it is not invariant w.r.t. their gauge flow. The question is thus whether solving these constraints in some suitable way might change the spectrum of the area operator.<br /><br />Constraints can be solved classically (reduced phase space quantisation) as well as at the quantum level (Dirac quantisation). At the quantum level, little is known about the issue of physical spectra, since we do not have a sufficient understanding of the solution space of the Hamiltonian constraint operator. As for the diffeomorphism constraint, we know how to solve it (roughly by going over to diffeomorphism averages of spin networks), but we then have the problem that the area operator does not preserve the diffeomorphism-invariant states. However, we can simply go over to the volume operator, which when evaluated on the whole spatial slice (e.g. for compact slices) does preserve these states. Then, the spectral properties of the volume operator simply pass to the diffeomorphism-invariant Hilbert space, indicating that the physical spectra might coincide with the kinematical ones. However, a <a href="http://arxiv.org/abs/1306.3246" target="_blank">study in 2+1 dimensions</a> has shown that that the spectra can become continuous at the level of the physical Hilbert space.<br /><br />As soon as we allow ourselves to solve the constraints classically, many things can happened. This is connected with a freedom in the choice of quantisation variables, or more precisely, the choice of Dirac observables and gauge fixings. As a seminal example, Kristina Giesel and Thomas Thiemann have considered <a href="http://arxiv.org/abs/0711.0119" target="_blank">LQG coupled to Brown-Kuchar dust</a>, where the dust fields provide us with a physical coordinate system and the Ashtekar-Barbero variables at given values of the physical dust coordinates are Dirac observables. Since the dust fields don’t interfere with the gravitational sector at the level of the symplectic structure, the LQG geometric operators simply pass to the level of the physical Hilbert space, thus giving and example of where their physical spectra indeed are discrete and furthermore coincide with the kinematical ones. <br /><br />However, different choices of gauge fixings or Dirac observables are possible. <a href="http://arxiv.org/abs/1203.6525" target="_blank">Another example</a> has been discussed in the context of a constant mean curvature clock for GR conformally coupled to a scalar field. Here, due to the non-minimal coupling, matter and geometry mix in the symplectic structure and the Dirac observables commuting with the constant mean curvature gauge condition correspond to a conformally rescaled metric $\tilde q_{ab} = \phi^2 q_{ab}$. From this metric, one can again pass to connection variables and construct a loop quantisation, resulting in a “twiddled” area operator which has the same spectral properties as the standard area operator, however a different interpretation. Since it is constructed from the twiddled metric, it measures a twiddled area, which is related to the usual area by a multiplication of $\phi^2$. Yet another example of canonical variables leading to a changed are spectrum due to non-minimal coupling has been given <a href="http://arxiv.org/abs/gr-qc/0305082" target="_blank">here</a>.<br /><br />So are the physical (untwiddled) areas discrete in this case? This obviously depends on the quantisation of $\phi$, since we have to extract the geometric area from the twiddled one. For scalar fields, different representations are available, e.g. following <a href="http://arxiv.org/abs/gr-qc/9705021" target="_blank">Thiemann’s original proposal</a>, <a href="http://arxiv.org/abs/gr-qc/0211012" target="_blank">its upgrade </a>to the Bohr compactification of the real line as a gauge group, or the representation discussed <a href="http://arxiv.org/abs/1507.01149" target="_blank">here</a>. As an example, in the last case $\hat \phi(x)$ acts by multiplication of an arbitrary (sufficiently smooth) function $\phi(x)$, and thus the eigenvalues of the induced untwiddled area operator can take any value. However, this simple argument only makes sense if we forget about our intended gauge fixing and simply use the variables suggested by it. Otherwise, we should solve the Hamiltonian constraint for $\phi$, resulting in a much more complicated and generally non-local expression. <br /><br />While an area operator could be reconstructed from the scalar field and the twiddled area operator, this might be too complicated for other choices of variables. An example is provided by Lovelock gravity, a higher-derivative generalisation of general relativity with the same phase space. <a href="http://arxiv.org/abs/1304.3025" target="_blank">In the LQG context</a>, one finds that the appropriate area operator analogue now measures Wald entropy (on non-rotating and non-distorted isolated horizons) for a suitable choice of variables suggested by the canonical analysis of the Lovelock action. The area of the surface can not simply be recovered from this expression, and the fate its spectrum remains unclear. <br /><br />While in the above examples the basic structure of the connection variables remained the same, e.g. having gauge group SU(2), this can also be tampered with. For example, choosing the <a href="http://arxiv.org/abs/1410.5608" target="_blank">diagonal metric gauge</a>, one obtains Abelian connection variables with the Bohr compactification of the real line as a gauge group. Then, all real numbers are eigenvalues of the area operator, as opposed to the SU(2) case. Somewhat differently, one can choose the <a href="http://arxiv.org/abs/1410.5609" target="_blank">radial gauge</a> and corresponding connection variables, where some of the area operates (the radial-angular ones) remain the same as in standard LQG, while others (the angular-angular) become volume operators of 2+1 gravity, which then have different spectral properties. <br /><br />In conclusion, we saw that the spectrum of geometric operators may be strongly influenced by the choice of variables we make, which is in turn influenced by the choice of gauge fixings / Dirac observables, i.e. ultimately the passage to the physical sector of the theory. This shows that the final spectra of geometric operators do depend on this choice and may or may not have discrete eigenvalues. One may conjecture that similar effects might also appear when solving the constraints at the quantum level, but this remains to be shown in concrete examples. </div>Norberthttp://www.blogger.com/profile/04965554394207041308noreply@blogger.com2tag:blogger.com,1999:blog-2381900080106522441.post-30286459036409226672016-03-03T11:12:00.000+01:002016-03-05T12:03:00.928+01:00Helsinki Workshop on Quantum Gravity<table align="center" cellpadding="0" cellspacing="0" class="tr-caption-container" style="margin-left: auto; margin-right: auto; text-align: center;"><tbody><tr><td style="text-align: center;"><a href="https://2.bp.blogspot.com/-DDyNnn1qN90/VthzPEfGuZI/AAAAAAAAAYM/INf90oOlL2s/s1600/helsinki.jpg" imageanchor="1" style="margin-left: auto; margin-right: auto;"><img border="0" height="214" src="https://2.bp.blogspot.com/-DDyNnn1qN90/VthzPEfGuZI/AAAAAAAAAYM/INf90oOlL2s/s320/helsinki.jpg" width="320" /></a></td></tr><tr><td class="tr-caption" style="text-align: center;">http://www.visitfinland.com/helsinki/</td></tr></tbody></table><br />From June 1-3, there will be a <a href="http://research.hip.fi/hwp/qg_helsinki/" target="_blank">quantum gravity workshop in Helsinki</a>, a kind of inaugural meeting for the field in Finnland. Mostly young people were invited to give talks, which should give a fresh view on the subject and hopefully result in collaboration across traditional subfield boundaries. I will talk about some recent ideas of connecting loop quantum gravity and string theory by using the gauge / gravity correspondence, with some comments already having appeared <a href="http://arxiv.org/abs/1509.02036" target="_blank">here</a>. <br /><br />On a related note, Sabine Hossenfelder has recently written a <a href="https://www.quantamagazine.org/20160112-string-theory-meets-loop-quantum-gravity/" target="_blank">very nice article</a> for quanta magazine about the possible connection between these subjects, based on interviews with several researchers in the field. Seeing that more people are becoming interested in this subject is certainly a great encouragement in further pursuing this direction.Norberthttp://www.blogger.com/profile/04965554394207041308noreply@blogger.com0tag:blogger.com,1999:blog-2381900080106522441.post-51946018510217154352016-02-23T07:29:00.000+01:002016-03-05T12:03:53.290+01:00Theta ambiguity, maximal symmetry, and the isolated horizon boundary condition<div class="separator" style="clear: both; text-align: center;"><a href="https://2.bp.blogspot.com/-5tT2HhkFteM/Vsv7dX0AeoI/AAAAAAAAAXg/iIpbK4w6bT0/s1600/Picture%2BTheta%2Bambiguity%2Bsmall.jpg" imageanchor="1" style="margin-left: 1em; margin-right: 1em;"><img alt="Is there a relation between theta ambiguity, maximal symmetry, and black holes?" border="0" height="116" src="https://2.bp.blogspot.com/-5tT2HhkFteM/Vsv7dX0AeoI/AAAAAAAAAXg/iIpbK4w6bT0/s400/Picture%2BTheta%2Bambiguity%2Bsmall.jpg" title="Is there a relation between theta ambiguity, maximal symmetry, and black holes?" width="400" /></a></div><div><br /></div>In a <a href="http://arxiv.org/abs/1602.05499">paper from last week</a>, I discussed the relation between the three above concepts, which at first may seem unrelated. The bottom line is that there exists a 1-parameter family of vacua for LQG which seem to be largely unknown. The vacua are induced by the standard Ashtekar-Lewandowski functional, however the underlying holonomy-flux-algebra is based on connection variables where the densitised triad is shifted as $P^{ai} = E^{ai} + \theta \epsilon^{abc} F_{bc}^i$. This actually corresponds to a rigorous implementation of the so called Kodama state in the context of real variables. Since all fluxes annihilate the Ashtekar-Lewandowski vacuum, the condition $P^{ai}=0$ is implemented by the vacuum and equivalent to<br />\[q_{c[a} q_{b]d} = \beta \theta F_{abcd} = \beta \theta R^{(3)}_{ab cd} - 2 \beta^2 \theta \epsilon_{cde} \sqrt{q} \nabla_{[a} K_{b]} {}^e - 2 \beta^3 \theta K_{c[a} K_{b]d} \]<br />with $\beta$ being the Barbero-Immirzi parameter. In case of a vanishing extrinsic curvature $K_{ab}$, this condition is nothing else than maximal symmetry for the spatial geometry. A vacuum based on variables with $\theta \neq 0$ is thus very interesting from the point of view of constructing semi-classical states, since it is peaked on a non-degenerate homogeneous geometry. $0 < \theta < \infty$ thus seems to interpolate between the Ashtekar-Lewandowski vacuum ($\theta=0$) and the recently introduced <a href="http://arxiv.org/abs/1401.6441" target="_blank">Dittrich-Geiller</a> vacuum, which implements $F = 0$.<br /><br />People familiar with isolated horizons and their application in LQG will also notice the strong similarity of the condition $P^{ai}=0$ with the isolated horizon boundary condition which is imposed in the black hole entropy computation in LQG (a pullback of $P^{ai} = 0$ to a 2-surface with $\theta$ depending on the total black hole area). It was shown <a href="http://arxiv.org/abs/1402.1038">before</a> that computations along the <a href="http://arxiv.org/abs/gr-qc/0005126">original lines</a> are actually applicable to general boundaries. Here, we also see that trying to impose the isolated horizon boundary condition directly on the full LQG Hilbert space is only enforcing a part of maximal symmetry condition, as opposed to selecting horizons (in contrast to what is often suggested). Thus, also less mainstream works along <a href="http://arxiv.org/abs/1104.4691">these lines</a>, while very interesting, do not provide suitable definitions of quantum horizons, but rather quantum symmetric surfaces. Norberthttp://www.blogger.com/profile/04965554394207041308noreply@blogger.com0tag:blogger.com,1999:blog-2381900080106522441.post-17065135759514684042016-02-10T08:00:00.000+01:002016-03-05T12:04:30.611+01:00What does it mean to derive LQC from LQG?<div class="separator" style="clear: both; text-align: center;"><a href="https://3.bp.blogspot.com/-k3Zka-7E3l4/VrrdtxN9uHI/AAAAAAAAAXE/Z_AsEN1441E/s1600/picture_LQG-LQC%2BJPG.jpg" imageanchor="1" style="margin-left: 1em; margin-right: 1em;"><img alt="Relation between LQG and LQC" border="0" height="149" src="https://3.bp.blogspot.com/-k3Zka-7E3l4/VrrdtxN9uHI/AAAAAAAAAXE/Z_AsEN1441E/s320/picture_LQG-LQC%2BJPG.jpg" title="Relation between LQG and LQC" width="320" /></a></div><br />Recently, I have been thinking about the question what it actually means to derive loop quantum cosmology from loop quantum gravity. In other words, what is the benchmark by which we can claim success in this task? Given that several interesting proposals for such a derivation have appeared recently, it is time to ask this meta-question. <br /><br />First, one should probably ask two different questions as a warm up:<br /><br />1) What is the cosmological sector of LQG?<br /><br />2) What is LQC?<br /><div><a name='more'></a><br />The answer to the first question is so far unclear, at least to me. It is directly connected to the question of how to write down a quantum state that represents a homogeneous and isotropic universe. Should this be some linear combination of spin networks which, on a coarse scale, look homogeneous and isotropic? Or can this be a quantum state which is defined on a very coarse graph, maybe containing only a single vertex? If we allow us to use such a coarse state, then which dynamics should we use? Can we take our standard Hamiltonians, or should we compute some effective dynamics that are induced by some finer state? If we would use a fine state, we would then better have to show that the effective dynamics does not depend on the details of the state that are washed out by the coarse graining. To conclude, the answer to the first question depends on what we precisely mean by the continuum limit of LQG. <br /><br />The second question on the other hand has more than one answer. One of them would be that LQC is a mini-superspace quantisation of general relativity using some input from loop quantum gravity. This input is on the one hand the choice of variables and Hilbert space. On the other hand, it is a choice of dynamics, which has been derived using <a href="http://arxiv.org/abs/gr-qc/0607039">coarse graining arguments</a>. Another answer to question number 2 is that that LQC is a <a href="http://arxiv.org/abs/1512.00713">1-vertex truncation</a> of full LQG in the diagonal gauge, which also underlies LQC. Here, coarse graining arguments were not employed in the definition of the dynamics. Instead, the dynamics that one obtains from quantisation were directly applied the 1-vertex quantum state, hinting that they are somehow already coarse grained. A similar strategy was also employed in <a href="http://arxiv.org/abs/1003.3483">spin foam cosmology</a>. <br /><br />So what did we learn now? We know that LQC is at the same time a mini-superspace quantisation using LQG techniques and a 1-vertex truncation of LQG. Of course, LQC might be more: it could secretly be also a coarse grained LQG based on very fine states, but this remains to be shown. If this would be the case, then we would have strong support to claim that LQC is indeed the cosmological sector of LQG. <br /><br />So how far are we along deriving LQC from finer states? The following main lines of work come to my mind:<a href="http://arxiv.org/abs/1410.4788"> “quantum reduced loop gravity”</a> implements the diagonal gauge fixing at the quantum level, together with a reduction of the degrees of freedom. The derivation of the dynamics in this approach is so far at the level of expectation values, which means that the time evolution agrees with LQC possibly only for small times. Another approach are <a href="http://arxiv.org/abs/1303.3576">condensate states</a> used on the context of group field theory, i.e. condensates of building blocks of geometry. Here, one is able to extract an effective cosmological dynamics from the GFT equations of motion and <a href="http://arxiv.org/abs/1505.07479">studies perturbations thereon</a>. It is currently not clear to me however to which extend such a condensate state qualifies as a very fine and homogeneous state. In both approaches, one obtains LQC only up to corrections, whereas in the 1-vertex truncation, one obtains it exactly. Without the use of any gauge conditions or simplifications, the situation is less clear. Interesting recent work along these lines can be found for example <a href="http://arxiv.org/abs/1601.05531">here</a>, <a href="http://arxiv.org/abs/1505.04400">here</a>, and <a href="http://arxiv.org/abs/1411.0323">here</a>, mainly with the conclusion that in this case, LQC cannot exactly follow from LQG.<br /><br />To conclude, it is not really clear what it means to derive LQC from LQG before one agrees upon what LQC actually is. Depending on your choice, you might be satisfied with existing derivations or not. The tricky questions is clearly the one about the cosmological sector of LQG, since it involves the whole story about coarse graining the dynamics. </div>Norberthttp://www.blogger.com/profile/04965554394207041308noreply@blogger.com0tag:blogger.com,1999:blog-2381900080106522441.post-26827097545383080742016-02-02T15:55:00.000+01:002016-03-05T12:06:03.641+01:00An example of a good talk<div class="separator" style="clear: both; text-align: center;"></div><div class="separator" style="clear: both; text-align: center;"><a href="http://www.thindifference.com/wp-content/uploads/2011/05/iStock_000010930181XSmall.jpg" imageanchor="1" style="margin-left: 1em; margin-right: 1em;"><img border="0" src="http://www.thindifference.com/wp-content/uploads/2011/05/iStock_000010930181XSmall.jpg" height="199" width="200" /></a></div><br />A few days ago, I collected some <a href="https://relq.blogspot.com/2016/01/how-to-give-good-talk-and-avoid-common.html" target="_blank">general recommendations for preparing good slides</a>. Shortly before I started to look into these ideas, I saw an example of a, in my point of view, very good talk, which incorporated many of the points I mentioned. Since examples are usually very helpful in grasping some new idea, I decided to explain why I think that this talk was so well done.<br /><br />The talk I am referring to was given by <a href="http://www.fuw.edu.pl/~swiezew/" target="_blank">Jędrzej Świeżewski</a> from the University of Warsaw in the <a href="http://relativity.phys.lsu.edu/ilqgs/" target="_blank">International Loop Quantum Gravity Seminar</a>. Here are direct links to the <a href="http://relativity.phys.lsu.edu/ilqgs/swiezewski111015.pdf" target="_blank">slides</a> and <a href="http://relativity.phys.lsu.edu/ilqgs/swiezewski111015.mp3" target="_blank">audio</a>.<br /><br /><a name='more'></a><br /><ul><li>The talk starts with an outline including some comments on why this work is interesting. This is important to keep the audience interested from the very beginning and should be contrasted with introductions of the type “we are going to prove some technical theorems about some topic that (only) the speaker is interested in”. Not everything about the motivation is given away right at the beginning, but something more follows on page 6 when some necessary background is introduced. This provides a nice break from technical results for the audience and raises their level of interest again in the middle of the talk. Still, the answer to the question on page 6 is then postponed to the end, keeping the audience again interested and trying to anticipate the result, which again increases focus. </li><li>The colouring scheme is easy on the eyes. There are no bright colours and no white background, yet the contrast is (at least most of the time) good enough to easily read everything. This is also true for the dark yellow used on some slides. Some exceptions to this are the boxes on slide 8 which are used to distinguish between certain parts of the Dirac matrix. While those colours can be clearly distinguished on my laptop screen, this was hardly possible on the projector during the actual talk. The same is true for the light brown arrow on slide 9, which was not visible on the projector. Thus, while the choice of colours was in general very good, there were minor problems which could have been avoided when testing the slides on a projector. </li><li>The structure of the different slides is rather individual and does not follow some strict pattern. Things on the same slide always belong together and no attempt was made to press two different topics on the same slide.</li><li>Unnecessary formulas have been suppressed and the notation has been simplified in places where details don’t matter, e.g. on slide 3. While the Poisson bracket marked as “nontrivial” has been computed with a quite interesting result, this was not necessary at this point for understanding the main logic of the talk and thus was rightfully neglected. </li><li>Text on the slides is mostly reduced to a minimum, which is a good thing. A few more words could have been cut on page 6, where the three blocks of text in the middle tempt the audience to stop listening and start reading. </li><li>The moderate pace of the speaker also strongly helps the audience in following the talk. Especially since this was a telephone seminar, speaking clearly is of great importance. </li><li>Since the computation and properties of the Dirac bracket is the main part of this talk, the formulas on pages 7-10 are warranted. The details here are again kept to the minimum necessary to follow and understand the computation. </li><li>Finally, the speaker was on time, in fact a little short of the available 60 minutes. This is however not a problem at all, since the important things were mentioned and prolonging the talk further would not have been appropriate. </li></ul>Norberthttp://www.blogger.com/profile/04965554394207041308noreply@blogger.com0tag:blogger.com,1999:blog-2381900080106522441.post-12550413631323180842016-01-27T16:20:00.000+01:002016-03-05T12:07:41.065+01:00How to give a good talk and avoid common mistakes<div class="separator" style="clear: both; text-align: center;"><a href="http://blog.atomiclearning.com/sites/blogs.atomiclearning.com/files/deathbypowerpoint.jpg" imageanchor="1" style="margin-left: 1em; margin-right: 1em;"><img border="0" src="http://blog.atomiclearning.com/sites/blogs.atomiclearning.com/files/deathbypowerpoint.jpg" height="231" width="320" /></a></div><div style="font-family: Helvetica; font-size: 12px; line-height: normal;"><br /></div><div style="font-family: Helvetica; font-size: 12px; line-height: normal;"><br /></div>Recently, I became aware of a large amount of literature and tutorials online about how to prepare proper slides for talks. While I was paying attention on certain aspects of my slides previously, it occurred to me that there were still many crucial problems in the slides I prepared so far, which must have unnecessarily hindered people in following what I was trying to say. My two ILQGS talks from <a href="https://relq.blogspot.com/2016/01/black-hole-entropy-from-loop-quantum.html" target="_blank">2013</a> and <a href="https://relq.blogspot.com/2016/01/symmetry-reductions-in-loop-quantum.html" target="_blank">2015</a> serve as a good example of the different approach to preparing slides, the 2015 one was my first talk prepared taking into account some of the points that I will discuss below. <br /><a name='more'></a><br /><div>In general, many of tips on preparing professional power point presentation can be taken over verbatim also for the scientific presentations that we are interested in. However, there are some peculiarities which scientists should pay attention to, and I will split the tips accordingly. Some of them sound very basic, but they are ignored far too often. In my point of view, it is a sign of respect for your audience if you prepare good slides, or at least avoid the most critical errors in doing so. An audience that feels respected will be more open to what you have to say, while disrespect in form of a poor presentation or unreadable / confusing / eye-straining slides will certainly not further your cause.<br /><div><div><br /><br /><b>General tips:</b><br /><ul><li>Before preparing the presentation, think about <u>what central message</u> you want to convey. Develop your presentation around this central message. Your aim should be that your audience remembers at least this message. </li><li><u>Don’t put long texts</u> on your slides, especially don’t simply read text that is on your slides. In fact, put as little text as possible. What happens if you put long text is that your audience will read the slides and at the same time not listen to you. They will be finished reading the slides before you are finished talking, and then have missed what you were saying.</li><li>Choose an <u>eye-friendly colour scheme</u>. Black on white is not eye friendly, the white background will unnecessarily strain the eyes of your audience. Instead use for example a light grey, brown, or orange tone for your background, and some dark, but not completely black, font. Or invert this choice. A classic is for example a blackboard background. An appropriate choice of colour scheme is a one-time investment in your presentation template for latex beamer or similar, well worth the investment. </li><li><u>Test your presentation on a projector</u>. Colours may look different than on your computer screen, and e.g. two colours that you used to distinguish some parts of a figure or formula might look exactly the same. </li><li>When giving your presentation, <u>make short pauses</u> after logical sections of your presentation end, in particular after every slide. This allows your audiences brains to rest for a second and process what you have said. </li><li><u>Use pictures</u> and sketches. </li></ul><br /><br /><br /><b>Scientific presentations:</b><br /><ul><li><u>Target your talk to your audience</u>. Don’t use a talk that you prepared for the specialists in your field for a general physics audience. They will not appreciate it. In preparing your talk, always think of the background that your listeners will have and adjust the technical level accordingly. </li><li><u>Repetition is your friend</u>. The topic of your presentation may be complicated, and there is a high chance that not everyone will understand what you are trying to say the first time. Therefore, repeat it in different words at different points of the presentation. The more important the statement is, the more often it should be repeated. Your central message from above should appear in the introduction, the main part, and the conclusion.</li><li>The classic: <u>avoid light green or yellow on white</u> background. It will be almost invisible also in your presentation. </li><li><u>Put the slide number</u> on your slides, preferably in some corner of the page and in some non-eye-catching, yet visible colour like 50% grey. People may want to refer to a certain slide when they ask questions. </li><li>Besides the slide number, <u>don’t put any other recurring information</u> like your name, institution, seminar title, date, etc. on the slide. While the latex beamer templates mostly include such a possibility, avoid it. People will start reading these things during your presentation and stop listening to you. Also don’t put the total number of slides, as people will e.g. start thinking about whether you will make it in time or not. The same is true for talk outlines. It is perfectly fine to have in-between slides where you say where you are right now in your presentation, but this should not be on every slide. Same reason as above. </li><li><u>Avoid formulas</u> wherever possible. Whenever you need to use a formula, simplify it as much as possible, even if this means dropping numerical factors or index structure. Remember that if you put something on your slide, it should be important and you convey to your audience that they should grasp it. Always explain to your audience why a formula that you put on your slide is important and what they should remember from it. It may be that some formula is just for an important illustrational purpose, e.g. to show that something can be computed in principle. In this case, say so, and your audience will not waste time trying to understand the formula further, while not listing to you. </li><li>After you are done with your presentation, <u>go through it again</u> and try to remove unnecessary text and formulas. </li><li>Clearly <u>explain axis labelling</u> in plots, explain what is shown <u>and what your audience should look for</u> in the data. If your audience is not familiar with certain plots, they will be lost. </li><li><u>Rehearse</u> your presentation. You will find better and more efficient ways to explain something once you tried it a few times. This will clearly improve your talk. </li><li><u>Know your timing</u> and be one time. If you rehearsed your talk properly, you will know how long it will take. </li></ul><br /><br />I tried to take these tips into account in my last two presentation <a href="https://relq.blogspot.com/2016/01/symmetry-reductions-in-loop-quantum.html" target="_blank">here</a> and <a href="https://relq.blogspot.com/2016/01/anti-de-sitter-spaces-from-finite-spin.html" target="_blank">here</a>. If you have any suggestions on what could be improved, please comment!<br /><br />As a selection of other interesting tips and tutorials, I suggest:<br /><ul><li><a href="http://www.cgd.ucar.edu/cms/agu/scientific_talk.html" target="_blank"><span id="goog_1525876325"></span>Ten Secrets to Giving a Good Scientific Talk by Mark Schoeberl and Brian Toon</a></li><li><span id="goog_1525876326"></span><a href="http://physics.illinois.edu/people/celia/ScienceTalks.pdf" target="_blank">Effective Science Talks by Celia M. Elliott</a></li><li><a href="http://arxiv.org/abs/gr-qc/9703019" target="_blank">Suggestions For Giving Talks by Robert Geroch</a></li><li><a href="http://de.slideshare.net/thecroaker/death-by-powerpoint" target="_blank">Death by Powerpoint by Alexei Kapterev</a></li><li><a href="https://www.youtube.com/watch?v=KbSPPFYxx3o" target="_blank">Life After Death by Powerpoint by Don McMillan</a></li></ul><h1 class="yt watch-title-container" style="border: 0px; color: #222222; display: table-cell; font-family: Roboto, arial, sans-serif; font-size: 24px; font-weight: normal; line-height: normal; margin: 0px 0px 13px; padding: 0px; vertical-align: top; width: 610px; word-wrap: break-word;"></h1></div><div><br /><br /><br /></div></div></div>Norberthttp://www.blogger.com/profile/04965554394207041308noreply@blogger.com1tag:blogger.com,1999:blog-2381900080106522441.post-66418873537767511232016-01-26T21:01:00.000+01:002016-03-05T12:08:57.578+01:00Anti de Sitter spaces from finite Spin Networks<br /><div class="separator" style="clear: both; text-align: center;"><iframe allowfullscreen="" class="YOUTUBE-iframe-video" data-thumbnail-src="https://i.ytimg.com/vi/ul_6eM8yXAY/0.jpg" frameborder="0" height="266" src="https://www.youtube.com/embed/ul_6eM8yXAY?feature=player_embedded" width="320"></iframe></div><br /><br />This video is my first example of a “short talk”, a presentation intended to quickly outline the main idea of a paper while skipping as much technicalities as possible. The interested reader can then consult <a href="http://arxiv.org/abs/1512.00605">the paper</a> for more details.<br /><br />This option seems more useful to me than trying to press too many technicalities in a talk, especially given that nowadays it is practically impossible to follow all interesting developments at a reasonable technical level. <br /><br />I hope to generate more of these short presentations in the future, also taking into account some of my older papers. <br /><br />I heard of this idea originally in some invitation to provide such a presentation for the PLB homepage, were it is implemented as a system called “<a href="https://www.elsevier.com/books-and-journals/content-innovation/audioslides">AudioSlides</a>”. Norberthttp://www.blogger.com/profile/04965554394207041308noreply@blogger.com0